

Sacramento Metropolitan

Air Quality Management District

Program Coordination Division 777 12th Street, 3rd Floor Sacramento, CA 95814 (916) 874-4800 airquality.org On the cover: Pyrocumulus cloud from Carr Fire rose over the hazy reflection of Shasta Lake on August 12, 2018. Carr Fire was one of the several wildfires simultaneously burning and affecting northern California. Photo by Danny Kam

Table of Contents

Table of Conf	tents	iii
List of Tables		iv
List of Figure	s	V
List of Abbrev	viations and Acronyms	vi
Section 1	Introduction	1
Section 2	Network Operations	2
Section 3	Minimum Monitoring Requirements	
Section 4	Recent and Proposed Modifications to the Network	15
Section 5	Quality Assurance Requirement and Other Monitoring Requiremen PQAO	t for the
Section 6	Process to Review Changes to PM _{2.5} Monitoring Network	18
Section 7	Data Submission Requirements	19
Appendix A	Detailed Site and Monitor information	21
A.1	Sacramento-Bercut Dr.	21
A.2	Sacramento-Branch Center #2	28
A.3	Elk Grove-Bruceville	33
A.4	Sacramento-Del Paso Manor	42
A.5	Folsom-Natoma St	53
A.7	North Highlands-Blackfoot	61
A.8	Sloughhouse	67
A.9	Sacramento-1309 T Street	73
Appendix B	Minimum Monitoring Requirement Assessment	75
Appendix C	Copy of Annual Data Certification Letter	
Appendix D	California Alternative Plan (CAP III)	

List of Tables

Table 2-1 Criteria Pollutants Measured by Stations	5
Table 2-2 Non-Criteria Pollutants Measured by Stations	5
Table 2-3 Meterology Measured by Stations	5
Table 2-4 Monitor Type of Criteria Pollutants	6
Table 2-5 Monitor Type of Non-criteria Pollutants	
Table 2-6 Network Affiliation of Criteria Pollutants	6
Table 2-7 Network Affiliation of Non-criteria Pollutants	
Table 2-8 Monitoring Objective of Criteria Pollutants	8
Table 2-9 Type of Site	9
Table 2-10 Spatial Scale	
Table 3-1 2017 Sacramento MSA Design Value and Monitoring Site Requirement, Part 1	
Table 3-2 2017 Sacramento MSA Design Value and Monitoring Site Requirement, Part 2	12
Table 3-3 PAMS Minimum Monitoring Requirement, Table 1	13
Table 3-4 Sampling Schedule for PM, Pb, and VOC Monitors in Sacramento County	
Table A-1 Sacramento-Bercut Dr. Metadata	
Table A-2 Distance between Object and Inlet or Probe at Sacramento-Bercut Dr	
Table A-3 Object Protrusion above Inlet or Probe at Sacramento-Bercut Dr	
Table A-4 Sacramento-Branch Center #2 Metadata	
Table A-5 Distance between Object and Inlet or Probe at Sacramento-Branch Center #2	
Table A-6 Object Protrusion above Inlet or Probe at Sacramento-Branch Center #2	
Table A-7 Distance vs. Protrusion Ratio at Sacramento-Branch Center #2	
Table A-8 Elk Grove-Bruceville Metadata	
Table A-9 Distance between Object and Inlet or Probe at Elk Grove-Bruceville	
Table A-10 Object Protrusion above Inlet or Probe at Elk Grove-Bruceville	
Table A-11 Distance vs. Protrusion Ratio at Elk Grove-Bruceville	
Table A-12 Sacramento-Del Paso Manor Metadata	
Table A-13 Distance between Object and Inlet or Probe at Sacramento-Del Paso Manor	
Table A-14 Object Protrusion above Inlet or Probe at Sacramento-Del Paso Manor	
Table A-15 Distance vs. Protrusion Ratio at Sacramento-Del Paso Manor	
Table A-16 Folsom-Natoma St. Metadata	
Table A-17 Distance between Object and Inlet or Probe at Folsom-Natoma St	
Table A-18 Object Protrusion above Inlet or Probe at Folsom-Natoma St	
Table A-19 Distance vs. Protrusion Ratio at Folsom-Natoma St.	
Table A-20 North Highlands-Blackfoot Metadata	
Table A-21 Distance between Object and Inlet or Probe at North Highlands-Blackfoot Way	
Table A-22 Object Protrusion above Inlet or Probe at North Highlands-Blackfoot Way	
Table A-23 Distance vs. Protrusion Ratio at North Highlands	
Table A-24 Sloughhouse Metadata	
Table A-25 Distance between Object and Inlet or Probe at Sloughhouse	
Table A-26 Object Protrusion above Inlet or Probe at Sloughhouse	
Table A-27 Distance vs. Protrusion Ratio at Sloughhouse	
Table B-1 Number of SLAMS Monitoring Site within Sacramento MSA	75

List of Figures

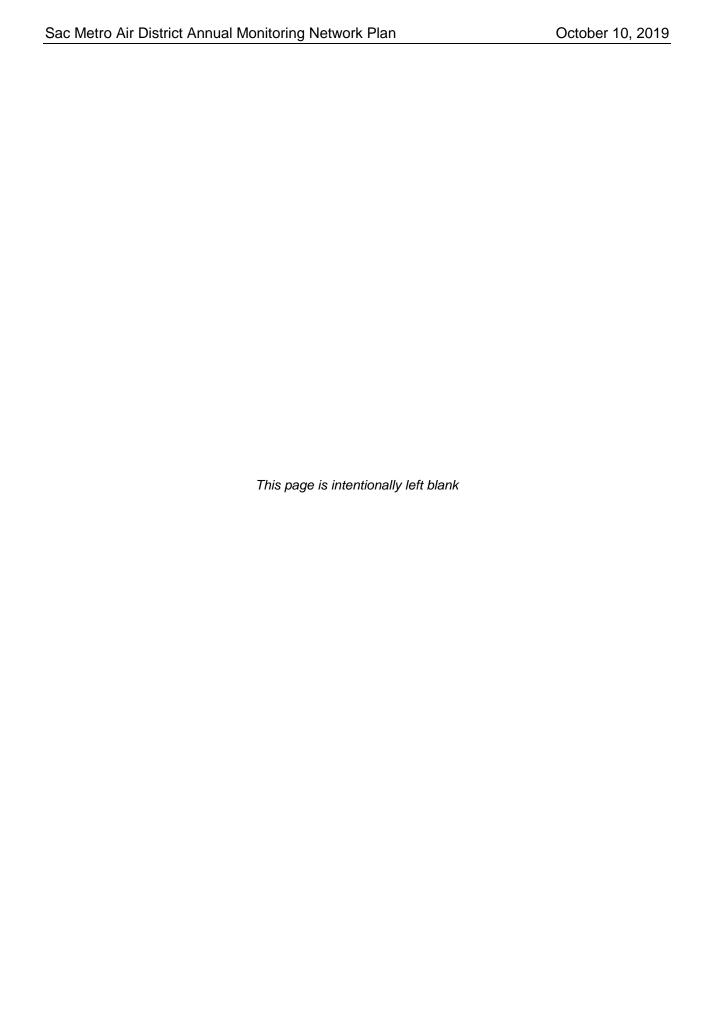

Figure 2-1 Counties within Sacramento-Arden Arcade-Roseville, California, MSA	2
Figure 2-2 Sacramento Federal O ₃ and PM _{2.5} Nonattainment Area	3
Figure 2-3 Air Monitoring Sites in Sacramento County	4
Figure A-1 Panoramic view toward north from air monitoring station roof	
Figure A-2 Panoramic view toward east from air monitoring station roof	22
Figure A-3 Panoramic view toward south from air monitoring station roof	22
Figure A-4 Panoramic view toward west from air monitoring station roof	22
Figure A-5 Google Earth satellite image of Sacramento-Bercut Dr	23
Figure A-6 Panoramic view toward north from air monitoring station roof	29
Figure A-7 Panoramic view toward east from air monitoring station roof	29
Figure A-8 Panoramic view toward south from air monitoring station roof	29
Figure A-9 Panoramic view toward west from air monitoring station roof	
Figure A-10 Google Earth satellite image of Sacramento-Branch Center #2	30
Figure A-11 Panoramic view toward north from air monitoring station roof	34
Figure A-12 Panoramic view toward east from air monitoring station roof	34
Figure A-13 Panoramic view toward south from air monitoring station roof	34
Figure A-14 Panoramic view toward west from air monitoring station roof	34
Figure A-15 Google Earth satellite image of Elk Grove-Bruceville	
Figure A-16 Panoramic view toward north from air monitoring station roof	
Figure A-17 Panoramic view toward east from air monitoring station roof	
Figure A-18 Panoramic view toward south from air monitoring station roof	43
Figure A-19 Panoramic view toward west from air monitoring station roof	
Figure A-20 Google Earth satellite image of Sacramento-Del Paso Manor	44
Figure A-21 Panoramic view toward north from air monitoring station roof	54
Figure A-22 Panoramic view toward east from air monitoring station roof	54
Figure A-23 Panoramic view toward south from air monitoring station roof	
Figure A-24 Panoramic view toward west from air monitoring station roof	
Figure A-25 Google Earth satellite image of Folsom-Natoma St.	
Figure A-26 Panoramic view toward north from air monitoring station roof	
Figure A-27 Panoramic view toward east from air monitoring station roof	
Figure A-28 Panoramic view toward south from air monitoring station roof	
Figure A-29 Panoramic view toward west from air monitoring station roof	
Figure A-30 Google Earth satellite image of North Highlands-Blackfoot Way	63
Figure A-31 Panoramic view toward north from air monitoring station roof	
Figure A-32 Panoramic view toward east from air monitoring station roof	
Figure A-33 Panoramic view toward south from air monitoring station roof	
Figure A-34 Panoramic view toward west from air monitoring station roof	
Figure A-35 Google Earth satellite image of Sloughhouse	
Figure B-1 MOU on Shared Monitoring Responsibility with CARB, Page 1	
Figure B-2 MOU on Shared Monitoring Responsibility with CARB, Page 2	
Figure C-1 Copy of Sac Metro Air District Data Certification Letters, Page 1	
Figure C-2 Copy of Sac Metro Air District Data Certification Letters, Page 2	
Figure C-3 Copy of Sac Metro Air District Data Certification Letters, Page 3	
Figure C-4 Copy of Sac Metro Air District Data Certification Letters, Page 4	
Figure C-5 Copy of Sac Metro Air District Data Certification Letters, Page 5	
Figure C-6 Copy of Sac Metro Air District Data Certification Letters, Page 6	
Figure D-1 California Alternative Plan, Page 1	
Figure D-2 California Alternative Plan, Page 2	
Figure D-3 California Alternative Plan, Page 3	88

Figure D-4 California Alternative Plan, Page 4	89
Figure D-5 California Alternative Plan, Page 5	
Figure E-E-1 Notice of Temporary Shut Down for Sacramento-Folsom Ambient Air	
Site, Page 1	92

List of Abbreviations and Acronyms

Abbreviation	Definition
μg/m ³	Microgram per cubic meter
AAC Lab	Atmospheric Analysis and Consulting, Inc.
AADT	Annual average daily traffic
AGL	Above ground level
ANP	Annual Network Plan
ARM	Approved regional monitor
AQI	Air Quality Index
AQS	Air Quality System
BAM	Beta attenuation monitor
CAP III	California Alternative Plan III
CARB	California Air Resources Board
CBSA	Core-based Statistical Area
CSN	Chemical Speciation Network
CFR	Code of Federal Regulation
CO	Carbon monoxide
District	Sacramento Metropolitan Air Quality Management District
DV	Design Value
EMP	Enhanced Monitoring Plan
ERG	Eastern Research Group, Inc.
FEM	Federal equivalent method
FR	Federal Register
FRM	Federal reference method
m	Meter(s)
MSA	Metropolitan Statistical Area
NAAQS	National Ambient Air Quality Standards
NCore	National Core Multiple-pollutant Monitoring Stations
NEI	National Emission Inventory
NMHC	Non-methane hydrocarbon
NO_2	Nitrogen dioxide
NO_X	Oxides of nitrogen
NO _Y	Reactive Oxides of Nitrogen
O_3	Ozone
PAMS	Photochemical Assessment Monitoring Station
Pb	Lead
PM	Particulate matter
PM ₁₀	Particulate matter, 10 micrometers or smaller
PM _{2.5}	Particulate matter, 2.5 micrometers or smaller
PM _{Coarse}	Particulate matter, between 10 and 2.5 micrometers
ppb	Parts per billion
ppm	Parts per million
PQAO	Primary quality assurance organization
PWEI	Population weighted emission index
QA	Quality assurance

QC	Quality control
RASS	Radio acoustic sounding system
RTI	Research Triangle Institute
RWP	Radar wind profiler
SACDOT	Sacramento County Department of Transportation
Sac Metro Air District	Sacramento Metropolitan Air Quality Management District
SASS	Speciated air sampling system
SCC	Sacramento City Code
SIP	State Implementation Plan
SLAMS	State and local air monitoring stations
SO ₂	Sulfur dioxide
SPM	Special purpose monitor
STN	Speciation Trends Network
TAPI	Teledyne Advanced Pollution Instrumentation
TEI	Thermo Environmental Instruments
U.S. EPA	United States Environmental Protection Agency
VOC	Volatile organic compound
VSCC	Very sharp cut cyclone

Section 1 Introduction

State and local agencies that conduct ambient air monitoring for regulatory purposes are required by Title 40, Code of Federal Regulations (40 CFR), Part 58.10 to submit an Annual Network Plan (ANP) to the United States Environmental Protection Agency (U.S. EPA) no later than July 1st of each year. The report must contain specific monitoring network information and must be presented for a 30-day public review period prior to submittal to the U.S. EPA. This ANP was posted on Sacramento Metropolitan Air Quality Management District's ('Sac Metro Air District's' or 'District's') website for public review and comment from October 10, 2019 through November 12, 2019. No public comment was received. This ANP covers the time period: January 1, 2018 – December 31, 2018. It focuses on the monitors that operate within Sacramento County, which is a part of Sacramento-Arden Arcade-Roseville Metropolitan Statistical Area (Sacramento MSA).

The primary purpose of this ANP is to document the existing Sacramento County air monitoring network and to discuss proposed changes in the ambient air monitoring network that may occur within 18 months following the submittal of this report. The plan includes information on monitors that are a part of State and Local Air Monitoring Stations (SLAMS) network, National Core Multipollutant Monitoring Stations (NCore), Chemical Speciation Network (CSN), Speciation Trends Network (STN), Special Purpose Monitor (SPM) sites, and Photochemical Assessment Monitoring Station (PAMS) network. The plan states whether each monitor in the ambient air monitoring network meets the requirements of 40 CFR Part 58, including Appendix A, C, D, and E, where applicable. 40 CFR Part 58, Appendix B, does not apply to the District's monitoring network because the District does not operate any air monitors regulated by Appendix B, which pertains only to Prevention of Significant Deterioration monitors. This report includes Federal Reference Method (FRM) and Federal Equivalent Method (FEM).

This report is not an extensive analysis of the design of the local air monitoring network. The extensive analysis of the air monitoring network is provided in a network assessment report, which is required every five years. The network assessment report analyzes and determines if the air monitoring network meets the monitoring objectives as defined in 40 CFR Part 58, Appendix D. It also provides recommendations to determine "whether new sites are needed, whether existing sites are no longer needed and can be terminated, and whether new technologies are appropriate for incorporation into the ambient air monitoring network" (40 CFR Part 58.10). The most recent network assessment report (2015 Air Monitoring Network Assessment) was completed and submitted to U.S. EPA Region 9 on April 22, 2016. The report is available on the District's website at http://www.airquality.org/Air-Quality-Health/Air-Monitoring.

Any shared monitoring responsibilities between the District and neighboring monitoring organizations in the Sacramento MSA are discussed in Section 3, Minimum Monitoring Requirement. For details on monitors in neighboring counties within the Sacramento MSA, please refer to the latest Annual Monitoring Network Plan published by California Air Resources Board (CARB).

Section 2 **Network Operations**

Sac Metro Air District is the local air quality regulatory and monitoring organization with jurisdiction in Sacramento County, California. Sacramento County is located in the middle of California's Central Valley and is a part of the Sacramento-Arden Arcade-Roseville Metropolitan Statistical Area. Sacramento MSA also includes Placer, El Dorado and Yolo Counties. Sacramento MSA has an estimated population of 2.3 million, including 1.5 million in Sacramento County. It ranks 27th in population among all MSA's in the United States¹. Figure 2-1 shows a map of Sacramento MSA.

Figure 2-1 Counties within Sacramento-Arden Arcade-Roseville, California, MSA

¹ United States Census Bureau, Population Division, 2017 Population Estimates (accessed 1 Jul 2019)

A portion of the Sacramento MSA is a nonattainment area for the federal 2015 8-hr ozone (O_3) standard and is referred to as the Sacramento Federal Ozone Nonattainment Area². This area includes all of Sacramento and Yolo Counties and portions of Placer, El Dorado, Solano, and Sutter Counties. The Sacramento region was also designated as nonattainment for the 2006 24-hour particulate matter with size of 2.5 microns or smaller ($PM_{2.5}$) standard (Figure 2-2). The region met the 2006 24-hour $PM_{2.5}$ standard in 2015 (82 FR 21711) and will continue to reduce $PM_{2.5}$ levels through various programs and strategies. Sacramento County has met the particulate matter with size of 10 microns or smaller (PM_{10}) air quality standard since 2002. Sacramento County is designated as attainment for the most recent federal health standards for carbon monoxide (PM_{10}), nitrogen dioxide (PM_{10}), and sulfur dioxide (PM_{10}). U.S. EPA has designated Sacramento County as unclassifiable/attainment for the 2008 federal lead (PM_{10}) standard³.

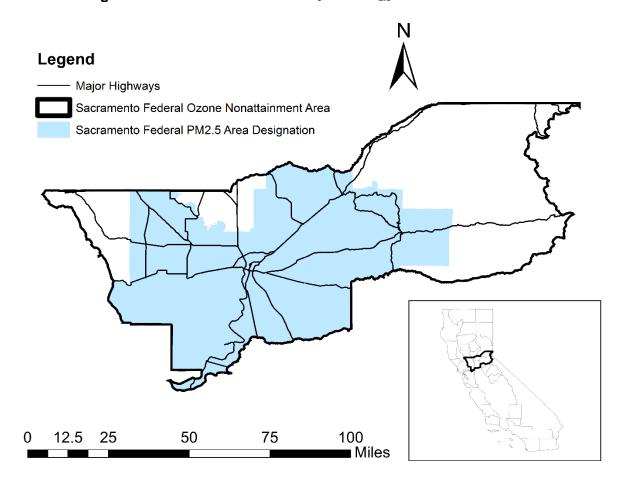


Figure 2-2 Sacramento Federal O₃ and PM_{2.5} Nonattainment Area

² https://www.epa.gov/sites/production/files/2018-04/documents/placeholder.pdf

³ https://www.epa.gov/lead-designations/lead-designations-final-nonattainment-designations-rounds-1-and-2; 70 FR 72097

Sac Metro Air District operates seven air monitoring sites within Sacramento County. CARB operates the eighth site at the Sacramento-T Street location. Figure 2-3 provides the location of air monitoring sites in Sacramento County. Sac Metro Air District monitors all criteria air pollutants as designated by the U.S. EPA. The District also monitors for non-criteria air pollutants and meteorological parameters. Tables 2-1 through 2-3 list the criteria pollutants, non-criteria pollutants and meteorological parameters measured at each station located in Sacramento County. Each monitoring instrument is categorized by monitor type: SLAMS or SPM. A SLAMS monitor may be further sub-divided into one or more network affiliations (e.g. PAMS, NCore, near-road, CSN STN). Tables 2-4 through 2-7 identify the monitor type and network affiliation at each air monitoring site.

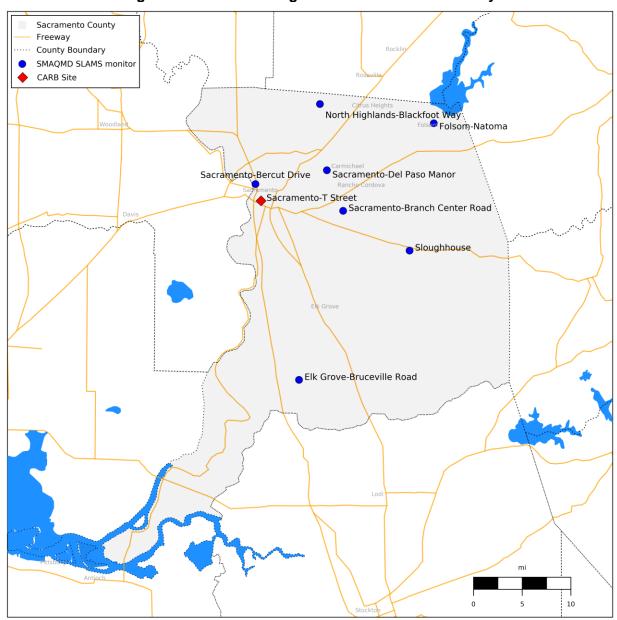


Figure 2-3 Air Monitoring Sites in Sacramento County

Table 2-1 Criteria Pollutants Measured by Stations

						PM ₁₀	PM ₁₀	$PM_{2.5}$	$PM_{2.5}$
	O_3	CO	NO_2	SO_2	Pb	Hourly	24-Hr	Hourly	24-Hr
Sacramento-Bercut Dr.		✓	✓						✓
Sacramento-Branch Center							✓		
#2									
Elk Grove-Bruceville Rd.	✓		✓					✓	
Sacramento-Del Paso	✓	✓	✓	✓	✓		✓	✓	✓
Manor									
Folsom-Natoma St.	✓		✓					✓	
North Highlands-Blackfoot	✓	✓	✓				✓		
Way									
Sloughhouse	✓			_				✓	
Sacramento-T Street	✓		✓			✓		✓	✓

Table 2-2 Non-Criteria Pollutants Measured by Stations

1 0.000 = = 1				addica by			
	Reactive	Non-	Volatile				
		methane					
	Com-	hydro-	Com-				Black
	pound	carbon	pound			Speciated	Carbon
	(NO_Y)	(NMHC)	(VOC)	Carbonyl	PM _{10-2.5}	$PM_{2.5}$	(BC)
Sacramento-Bercut Dr.							✓
Sacramento-Branch Center							
#2							
Elk Grove-Bruceville Rd.		✓	✓				
Sacramento-Del Paso Manor	✓	√	✓	✓	✓	✓	√
Folsom-Natoma St.	✓	✓	✓				
North Highlands-Blackfoot							
Way							
Sloughhouse							
Sacramento-T Street						√	

Table 2-3 Meterology Measured by Stations

IUDI	C E O IVICE	<u> </u>	110aca: cc	i by Clatic	110		
	Outdoor				Baro-		Wind
	Tempera	Relative	Solar	Ultraviolet	metric	Precipita	Direction
	ture	Humidity	Radiation	Radiation	Pressure	tion	& Speed
Sacramento-Bercut Dr.	✓						✓
Sacramento-Branch Center							
#2							
Elk Grove-Bruceville Rd.	✓	✓	✓	✓	✓	✓	✓
Sacramento-Del Paso Manor	✓	✓	✓				✓
Folsom-Natoma St.	✓	✓	✓				✓
North Highlands-Blackfoot							
Way							
Sloughhouse							√
Sacramento-T Street							✓

Table 2-4 Monitor Type of Criteria Pollutants

Table 2 1 Method Type of Otherla 1 Chatante									
						PM ₁₀	PM ₁₀	$PM_{2.5}$	$PM_{2.5}$
	O ₃	CO	NO_2	SO ₂	Pb	Hourly	24-Hr	Hourly	24-Hr
Sacramento-Bercut Dr.		SLAMS	SLAMS						SLAMS
Sacramento-Branch Center							SLAMS		
#2									
Elk Grove-Bruceville Rd.	SLAMS		SLAMS					SLAMS	
Sacramento-Del Paso	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS		SLAMS	SLAMS	SLAMS
Manor									
Folsom-Natoma St.	SLAMS		SLAMS					SLAMS	
North Highlands-Blackfoot	SPM	SPM	SPM				SLAMS		
Way									
Sloughhouse	SLAMS							SLAMS	
Sacramento-T Street	SLAMS		SLAMS			SLAMS		SLAMS	SLAMS

Legend:

SLAMS – State/Local Air Monitoring Stations

SPM – Special Purpose Monitor

Table 2-5 Monitor Type of Non-criteria Pollutants

rable 2 5 Monitor Type of Non-criteria i onatants										
						Speciated				
	NO_Y	NMHC	VOC	Carbonyl	$PM_{10-2.5}$	$PM_{2.5}$	BC			
Sacramento-Bercut Dr.							SLAMS			
Sacramento-Branch Center										
#2										
Elk Grove-Bruceville Rd.		SLAMS	SLAMS							
Sacramento-Del Paso Manor	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SPM			
Folsom-Natoma St.	SLAMS	SLAMS	SLAMS							
North Highlands-Blackfoot										
Way										
Sloughhouse	•									
Sacramento-T Street	•					SLAMS				

Legend:

SLAMS – State/Local Air Monitoring Stations

SPM - Special Purpose Monitor

Table 2-6 Network Affiliation of Criteria Pollutants

	O ₃	CO	CO NO ₂ SO ₂	SO	SO ₂ Pb	PM ₁₀	PM ₁₀	$PM_{2.5}$	$PM_{2.5}$
	O ₃)		002		Hourly	24-Hr	Hourly	24-Hr
Sacramento-Bercut Dr.		NR	NR						NR
Sacramento-Branch Center							NA		
#2							INA		
Elk Grove-Bruceville Rd.	PAMS		PAMS					NA	
Sacramento-Del Paso	NCORE	NCORE	NCORE	NCORE	NCORE		NA	NCORE	NCORE
Manor	PAMS	PAMS	PAMS	NCORE	NCORE		INA	NCORE	NCORE
Folsom-Natoma St.	PAMS		PAMS					NA	
North Highlands-Blackfoot	NA	NA	NA				NA		
Way							INA		
Sloughhouse	NA							NA	
Sacramento-T Street	NA		NA			NA		NA	NA

Legend:

NA – No affiliation

NCore - National Core Multi-pollutant Network

NR – Near-road PAMS – Photochemical Assessment Monitoring Station

Table 2-7 Network Affiliation of Non-criteria Pollutants

	Reactive	Non-	Volatile				
	Nitrogen	methane	Organic				
	Com-	hydro-	Com-			Speciated	Black
	pound	carbon	pound	Carbonyl	PM _{10-2.5}	PM _{2.5}	Carbon
Sacramento-Bercut Dr.							NR
Sacramento-Branch Center							
#2							
Elk Grove-Bruceville Rd.		PAMS	PAMS				
Sacramento-Del Paso Manor	NCORE	PAMS	PAMS	PAMS	NCORE	CSN	NA
Sacramento-Dei Faso Marior						NCORE	
Folsom-Natoma St.	PAMS	PAMS	PAMS				
North Highlands-Blackfoot							
Way							
Sloughhouse							
Sacramento-T Street						CSN	

Legend:

CSN – Chemical Speciation Network

NA – No affiliation

NCore – National Core Multi-pollutant Network

NR – Near-road

PAMS – Photochemical Assessment Monitoring Station

The primary focus of the current ambient air monitoring network is the data collection of criteria pollutants. The data collected from the air monitoring stations supports State Implementation Plan (SIP) development, attainment/nonattainment decisions, public notification, and air quality modeling and research efforts. The network is designed to meet three basic monitoring objectives as required by 40 CFR Part 58, Appendix D: (1) provide air pollution data to the general public in a timely manner; (2) support compliance with ambient quality standards and emissions strategy development; and (3) support air pollution research studies. An overview of monitoring objectives is in Table 2-8.

Table 2-8 Monitoring Objective of Criteria Pollutants

		3 7 -					
	O ₃	СО	NO ₂	SO ₂	Pb	PM ₁₀	PM _{2.5}
Sacramento-Bercut Dr.		N, P, R	N, P, R				N, P, R
Sacramento-Branch Center #2						N, P	
Elk Grove-Bruceville Rd.	N, P		N, P				Р
Sacramento-Del Paso Manor	N, P, R	N, P, R	N, P, R	N, P, R	N, P, R	N, P, R ^(A)	N, P, R
Folsom-Natoma St.	N, P		N, P				N, P, R
North Highlands-Blackfoot Way	N, R	N, R	N, R			N, P	
Sloughhouse	N, P						N, P, R
Sacramento-T Street	N, P		N, P			N, P	N, P

^(A)There are three PM₁₀ monitors at Sacramento-Del Paso Manor; the primary monitor for NAAQS comparison and its collocated (audit) monitor with parameter code 88102 have objectives of N, P; the last PM₁₀ monitor with parameter code 85101, used in the calculation of Particulate Matter with size between 10 and 2.5 micrometers (PM_{Coarse}), has objectives of P, R.

Monitoring objective abbreviation:

N – National Ambient Air Quality Standards (NAAQS) Comparison

P – Public Info

R – Research

There are different types of monitoring sites to support these monitoring objectives. Examples of these are: sites that are located in highest pollutant concentration area, sites that are located in area of high population density to monitor for population exposure, sites that determines general background concentration levels, etc. A list of different types of monitoring sites is listed in 40 CFR Part 58, Appendix D. In addition, a spatial scale of representative is assigned to the air monitors to identify "the link between general monitoring objectives, sites types and the physical location of a particular monitor" (40 CFR Part 58, Appendix D). Tables 2-9 and 2-10 summarize the site type and spatial scale. Description and further explanation on site type and spatial scale can be found in 40 CFR Part 58, Appendix D.

For in-depth details on individual monitors, see Appendix A, Detailed Site Information. Appendix A documents the monitor type, affiliation, monitoring objectives, type of site, and spatial scale by each monitor. It also provides a statement of purpose and pollutant specific information, such as whether a PM2.5 monitor is suitable for comparison to the national ambient air quality standard, 1-point quality control (QC) check frequency and distance to other PM monitors. All monitors operated in the District's ambient air monitoring network meet the requirements of 40 CFR Part 58, including Appendices A, C, D, and E.

Table 2-9 Type of Site

	_		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	O ₃	CO	NO ₂	SO ₂	Pb	PM ₁₀	PM _{2.5}	ВС
Sacramento-Bercut Dr.		SO	SO				SO	SO
Sacramento-Branch Center #2						HC		
Elk Grove-Bruceville Rd.	UB		UB				GB	
Sacramento-Del Paso Manor	PE	PE	PE	PE	PE	PE	PE, HC	PE
Folsom-Natoma St.	MO PE		HC				PE	
North Highlands-Blackfoot Way	PE	PE	PE			PE		
Sloughhouse	MO						UB	
Sacramento-T Street	GB		PE			PE	HC, PE	

Site Type abbreviation

GB – General/background HC – Highest concentration

MO – Maximum O₃ concentration

PE – Population exposure

SO - Source oriented

UB - Upwind/background

Table 2-10 Spatial Scale

Table 2-10 Spatial Scale								
	O ₃	CO	NO ₂	SO ₂	Pb	PM ₁₀	$PM_{2.5}$	
Sacramento-Bercut Dr.		MC	MC				MC	
Sacramento-Branch Center						NB		
#2								
Elk Grove-Bruceville Rd.	UB		UB				UB	
Sacramento-Del Paso	NB	NB	NB	UB	UB	NB	NB	
Manor								
Folsom-Natoma St.	NB		NB				NB	
North Highlands-Blackfoot	UB	NB	NB			NB		
Way								
Sloughhouse	NB						UB	
Sacramento-T Street	UB		NB			NB	NB	

Spatial Scale abbreviation

MC – Microscale

UB - Urban scale

NB - Neighborhood scale

Section 3 Minimum Monitoring Requirements

The minimum number of monitoring sites required for each pollutant is based on one or more applicable factors, as described in 40 CFR Part 58, Appendix D. Examples of these factors include: MSA population, core-based statistical area (CBSA) population, pollutant design value, pollutant maximum concentration, attainment status, annual average daily traffic (AADT), SIP, maintenance plan, population weighted emission index (PWEI), and U.S. EPA's national emission inventory (NEI) data.

Sacramento MSA meets or exceeds minimum monitoring requirement for all criteria pollutants – O₃, PM_{2.5} (manual and continuous methods), PM₁₀, NO₂, SO₂, CO, and Pb. Details of the monitors representing Sacramento MSA (or CBSA, ID#40900) are provided in Tables 3-1 and 3-2. As mentioned in Section 2, Sacramento MSA has 2.3 million residents and covers all of El Dorado, Placer, Sacramento, and Yolo Counties.

Sac Metro Air District has an agreement with CARB to share specific portions of the monitoring responsibility in the Sacramento MSA. A copy of this agreement is provided in Appendix B. Placer County Air Pollution Control District, the air quality agency for Placer County, and Yolo-Solano Air Quality Management District, the air quality agency for Yolo County, also operate air monitoring stations within the Sacramento MSA.

In 2018, northern California had a number of devastating wildfires, including Camp Fire, which is the most destructive and deadliest wildfire in California history according to California Department of Forestry and Fire Protection. Smoke from these wildfires caused unprecedented air quality impacts. Ozone and PM2.5 concentrations exceeded the NAAQS. The design value in Table 3-1 reflects the (1) as-is measurement with wildfire impact and (2) exclusion of air quality measurements with wildfire impact. Sac Metro Air District is working with other monitoring organization in the Sacramento Federal Non-attainment Area to submit to U.S. EPA an exceptional event demonstration, which excludes air quality measurements with wildfire impact from NAAQS comparison.

Table 3-1 2018 Sacramento MSA Design Value and Monitoring Site Requirement, Part 1

Table 3	1 ZU 10 Oaci	anicito	NOA Des	igii valu	e allu ivi	onitoring Site Requirement, Part 1
			Active	Active		
		Number		SLAMS	Addi-	
		of	sites in	sites in	tional	
	Type	SLAMS	Sacra-	Sacra-	SLAMS	
	(if	sites	mento	mento	sites	(5)(0)
Pollutant	applicable)	required	MSA ^{(A})	County ^{(A}	needed	2018 design value (B)(C) and location
						(1) 0.088 parts per million (ppm)
O ₃		2	16	6	0	at Placerville (06-017-0010)
03			10	U	U	(2) 0.084 ppm at Placerville (06-067-
						0010)
	FRM/FEM	3	7	4	0	24-hr:
			•	'		(1) 50 micrograms per cubic meters
$PM_{2.5}$						(µg/m³) at Woodland (06-113-1003)
						(2) 35 µg/m³ at Sacramento-Del
						Paso Manor (06-067-0006)
	Continuous	2	6	3	0	Annual:
		_	·			(1) 10.4 μg/m ³ at
						Sacramento-Del Paso Manor
						(06-067-0006)
						(2) 9.4 μg/m³ at Sacramento-Del
						Paso Manor (06-067-0006)
						3-year average expected number of
PM ₁₀		2-4 ⁴	8	4	0	exceedance:
1 14110			J	-		(1) 4.1 days at multiple sites ^(D)
						(2) 0.0 days
PM _{10-2.5}	A A : O 1:4 1	1	1	1	0	Not applicable

⁽A) U.S. EPA Air Quality System (AQS) Raw Data Report (AMP 350) and Monitor Description Report (AMP 390), accessed on 1 Jul 2019

⁽B) Design values from U.S. EPA Air Quality System Design Value Report (AMP 480), accessed 25 Apr. 2018, and Raw Data Report (AMP350), accessed on 1 Jul 2019

⁽C) The Sacramento Valley was impacted by a number of wildfires in 2018; the District will be submitting an exceptional event demonstration request to EPA; the design value noted with (1) includes all data collected in 2018; the design value noted with (2) excludes data with wildfire impacted data as outline in the exception event demonstration package the District will submit to U.S. EPA

⁽D) North Highlands (06-067-0002), Sacramento-Del Paso Manor (06-067-0006), West Sacramento (06-113-2001)

⁴ Wildfire smoke in 2017 and 2018 impacted multiple air monitoring stations. While the District is addressing some impacts under the Exceptional Event Rule (81 FR 68216), other smoke impacts are short of the rule threshold and could not be addressed and/or does not meet the Exceptional Event Rule requirements. Without any smoke impacts, historical data from 2009 through 2018 shows the maximum PM10 ambient concentration in Sacramento MSA is 70% of the NAAQS. Therefore, existing monitors meet the monitoring requirements in 40 CFR 58, Appendix D, as well as the needs of communities in local air districts. The District is committed to working with U.S. EPA, CARB, and other local air districts to ensure that monitoring levels continue to protect public health and safety.

Table 3-2 2018 Sacramento MSA Design Value and Monitoring Site Requirement, Part 2

Table 3-2 2018 Sacramento MSA Design Value and Monitoring Site Requirement, Part 2									
			Active	Active					
		Number	SLAMS	SLAMS	Addi-				
		of	sites in	sites in	tional				
	Type	SLAMS	Sacra-	Sacra-	SLAMS				
	(if appli-	sites	mento	mento	sites				
Pollutant	cable)	required	MSA	County	Needed				
	Near- road	1	1	1	0	Highest AADT: 260,000 (U.S. Highway 50 east of 15/16 th Street)			
NO ₂	Area- wide	1	6	4	0	NO ₂ monitor at Sacramento-Del Paso Manor (06-067-0006) serves as both PAMS and area-wide monitor			
SO ₂		1	1	1	0	Total SO ₂ : 4,213 tons ^(C) Population Weighted Emission Index: 9,795 million persons-tons per year ^(D) Monitor at Sacramento-Del Paso Manor satisfy NCore requirement			
	Near- road	1	1	1	0	Monitor at Sacramento-Bercut Dr. satisfy the near-road monitoring			
СО	Non- near- road	1	1	1	0	requirement Trace monitor at Sacramento-Del Paso satisfy the NCore requirement, which also satisfy the monitor requirement in the CO Maintenance Plan			
	NCore	0 ^(E)	1	1	0	Located at Sacramento-Del Paso Manor			
Pb	Source oriented	0	0	0	0	Number of non-airport source > 0.5 tons per year: 0 ^(C) Number of airport source >= 1.0 tons per year: 0 ^(C)			

⁽A) California Department of Transportation, 2016 Traffic Volumes, accessed 1 Jul 2019 (2017 data became inaccessible due to website "updates for digital accessibility")

⁽B) Sacramento MSA has surpassed the 250,000 threshold for a second near-road monitoring site per 40 CFR Part 58 Appendix D, 4.3.2(a); the District is working with U.S. EPA and CARB to determine the appropriate timing and location for a second near-road monitoring site

⁽C) Source: 2014 National Emission Inventory, accessed 24 Apr. 2018

⁽D) Per 40 CFR Part 58, Appendix D, $PWEI = \frac{Total SO_2 \times MSA population}{1,000,000}$

⁽E) Revisions to Ambient Monitoring Quality Assurance and Other Requirements promulgated on April 27, 2016, revokes the lead monitoring requirement at NCore sites

The District also meets the current minimum PAMS monitoring requirements. PAMS monitoring is required for the Sacramento MSA because the region is designated as a nonattainment area for the federal ozone standard. The PAMS network is operated in accordance with the California Alternative Plan III (CAP III), which is provided in Appendix D. The 2015 review of National Ambient Air Quality Standards for Ozone (80 FR 65292) requires the State to draft an Enhanced Monitoring Plan (EMP) for enhanced ozone monitoring activities. The District will work with CARB to evaluate the current PAMS operations in the EMP.

Currently, the District operates three PAMS sites: one Type I, one Type II, and one Type III sites. The site requirements and definitions can be found in 40 CFR Part 58, Appendix D. Tables 3-3 and 3-4 list the instruments operating at each PAMS site and the current number of monitors required.

Table 3-3 PAMS Minimum Monitoring Requirement, Table 1

PAMS Site Type	03	00	NO ₂	NO _Y	NOC	Carbonyl	Surface Meteorology	Upper Air Meteorology
I	✓		✓				✓	✓
II	✓	✓	✓	√ (A)	✓	✓	✓	
III	✓		✓	✓	✓		✓	
equired	3 ^(B)	1	2	1	2	1	3 ^(B)	1
active	3	1	3	1	2	1	3	1
	Site Type I II equired	Site Type O I II III equired 3(B)	Site Type O O O O O O O O O O O O O O O O O O O	PAMS Site Type O O O V II V V III V equired 3(B) 1 2	PAMS Site Type O O O O O O O O O O O O O O O O O O O	PAMS Site Type O O O V O O O O O O O O O O O O O O O	PAMS Site Type O O O V O O O O O O O O O O O O O O O	PAMS Site Type O O O O O O O O O O O O O O O O O O O

⁽A) Per 40 CFR Part 58, Appendix D, this monitor does not count toward PAMS requirement but is required for NCore; reactive oxides of nitrogen (NO_Y) for PAMS must be at Type I or III site. This requirement is fulfilled by the Folsom-Natoma St. site

All instruments operated by the District meet the operating schedule requirements as specified in 40 CFR Part 58.12. All continuous monitors report hourly data and monitor air pollutant year-round, unless otherwise specified in Appendix A. Non-continuous monitors are operated by following the sampling schedule in Table 3-4 and are operated year-round, except: Speciated volatile organic compound (VOC) and carbonyl samplers related to PAMS that are operated from July through September.

⁽B) This requirement is dependent on the number of PAMS sites; see 40 CFR Part 58, Appendix D

Table 3-4 Sampling Schedule for PM, Pb, and VOC Monitors in Sacramento County

Pollutant	Site	Sampling	Note
		Schedule	
PM ₁₀ ^(A)	Sacramento-Branch Center #2	1 in 6 days	 (1) Max. 24-hr concentration: 200 μg/m³; ratio to standard: 1.33 (2) Max. 24-hr concentration: 148 μg/m³; ratio to standard: 0.98
PM ₁₀ ^(A)	Sacramento-Del Paso Manor	1 in 6 days	 (1) Max. 24-hr concentration: 212 μg/m³; ratio to standard: 1.41 (2) Max. 24-hr concentration: 42 μg/m³; ratio to standard: 0.28
PM ₁₀ ^(A)	North Highlands- Blackfoot Way	1 in 6 days	 (1) Max. 24-hr concentration: 222 μg/m³; ratio to standard: 1.48 (2) Max. 24-hr concentration: 50 μg/m³; ratio to standard: 0.33
PM ₁₀ ^(A)	Sacramento-T Street	Continuous Monitor	
PM _{2.5} ^(B)	Sacramento-Bercut Dr.	1 in 3 days	
PM _{2.5} ^(B)	Elk Grove-Bruceville	Continuous Monitor	Non-FEM
PM _{2.5} ^(B)	Sacramento-Del Paso Manor	Daily	
PM _{2.5} ^(B)	Folsom-Natoma St.	Continuous Monitor	
PM _{2.5} ^(B)	Sloughhouse	Continuous Monitor	Special purpose monitor
PM _{2.5} ^(B)	Sacramento-T Street	Continuous Monitor	Special purpose monitor
PM ₁₀ -	Sacramento-Del Paso Manor	1 in 3 days	
Pb	Sacramento-Del Paso Manor	1 in 6 days	
PAMS	Elk Grove-Bruceville	N/A	Episodic sampling only between Jul-Sep
PAMS	Sacramento-Del Paso Manor	1 in 3 days	Jul-Sep
PAMS	Folsom-Natoma St.	1 in 3 days	Jul-Sep

⁽A) Per 40 CFR Part 58.12(e), PM₁₀ (non-continuous) operates on a minimum of 1 in 6 days sampling schedule. More frequent sampling may be required if ratio to the 24-hr PM₁₀ NAAQS (standard) exceeds 0.8

⁽B) Per 40 CFR Part 58.12(d)(1)(iii), "required SLAMS stations whose measurements determine the 24-hour design value for their area and whose data are within ±5 percent of the level of the 24-hour PM2.5 NAAQS must have an FRM or FEM operate on a daily schedule if that area's design value for the annual NAAQS is less than the level of the annual PM2.5 standard."

⁽C) Per 40 CFR Part 58.12 (d)(1)(i), "manual PM2.5 samplers at required SLAMS stations without a collocated continuously operating PM2.5 monitor must operate on at least a 1-in-3 day schedule unless a waiver for an alternative schedule has been approved per paragraph (d)(1)(ii) of this section.

⁽D) Per 40 CFR Part 58.12(f)(1), "manual PM10-2.5 samplers at NCore stations must operate on at least a 1 in 3 days schedule at sites without a collocated continuously operating federal equivalent PM10-2.5 method."

Source: Design values from U.S. EPA Air Quality System Design Value Report (AMP 480), accessed on 2 May 2018, and Raw Data Report (AMP350) on Pb (85129), accessed on 1 Jul 2019

Section 4 Recent and Proposed Modifications to the Network

This section discusses recent and proposed modifications to the Sacramento County air monitoring network. It includes modifications that occurred within the 2018 calendar year and may occur within the next 18 months following this annual network plan submittal. Unless specifically noted below with approval received from CARB and U.S. EPA, Sac Metro Air District is not formally requesting approval for modification through this network plan. Prior to a network modification, the District will work with the CARB to submit to U.S. EPA the required documentation for official review and approval of proposed system modifications. Sac Metro Air District is a part of the CARB's primary quality assurance organization and works with CARB to ensure air monitoring requirements are met.

Sacramento-Bercut Dr.

No change anticipated.

Sacramento-Branch Center #2

The District is evaluating replacing the PM10 filter based method to a PM10 continuous monitoring at this site. PM10 continuous monitoring provides a real-time air quality information to the public.

Elk Grove-Bruceville Rd.

The District is considering discontinuing the speciated VOC episodic measurements at this site. Speciated VOC concentrations collected at this site are low, indicative of robust representations of background concentrations. Speciated VOC measurements at this site are not specifically required by 40 CFR Part 58, Appendix D, but are included as a measurement in Sacramento's portion of the California Alternative Plan⁵. As mentioned in Section 3, the District will evaluate with CARB the necessity of this site in the EMP, which is a PAMS requirement in 40 CFR Part 58, Appendix D. As of spring 2019, U.S. EPA is proposing to delay the PAMS implementation requirement.

The District is planning to upgrade the old Elk Grove-Bruceville PM_{2.5} beta attenuation monitor (BAM) monitor to a newer version in Spring 2020. The parameter code for PM_{2.5} will be changed accordingly based on the AQS coding manual.

The District anticipates installing a sonic detecting and ranging (SODAR) instrument to determine upper air wind speed when resources become available.

Sacramento-Del Paso Manor

In Revisions to Ambient Monitoring Quality Assurance and Other Requirements promulgated on March 28, 2016 (81 FR 17248), U.S. EPA removed the lead monitoring requirement at urban NCore sites, provided that the sampler has collected sufficient data to calculate a design value. Sacramento-Del Paso is an NCore site, and the lead sampler at this site meets the condition to discontinue. The District is evaluating the discontinuation of this lead sampler.

Sacramento-Del Paso Manor was established in the 1970s with a small number of monitoring equipment. The number of equipment has steadily increased due to PAMS and NCore requirements, and the station cannot accommodate any more equipment. Renovation and site expansion are expected in 2020 and will allow the station to accommodate additional equipment required by PAMS requirements in 40 CFR Part 58, Appendix D. After the station expansion project is completed, the District will replace the existing PAMS VOC canister sampling with a continuous auto gas chromatography (Auto-GC) instrument. An ultraviolet radiation sensor, precipitation gauge, and barometric pressure sensor will also be installed per PAMS requirement.

⁵ A copy is provided in Appendix D.

The District is evaluating replacing the PM10 filter based method to a PM10 continuous monitoring at this site. PM10 continuous monitoring provides a real-time air quality information to the public.

Folsom-Natoma St

The District started work to replace the air monitoring shelter and has worked with CARB and U.S. EPA to minimize the loss of ozone data during construction. The District submitted a temporary request for shutdown for this site on July 3, 2019. On July 19, 2019, the District received notice from the U.S EPA to move forward with the scheduled temporary shutdown of the Sacramento-Folsom Air Monitoring Site (AMS).⁶ On July 23, 2019, the District temporarily suspended monitoring for ozone, nitrogen dioxide, non-methane hydrocarbon, reactive oxides of nitrogen, PM_{2.5}, speciated volatile organic compound, outdoor temperature, relative humidity, solar radiation, wind direction, and wind speed during construction, which is expected to be completed by the end of 2019. U.S EPA will approve the temporary request for shut down submitted on July 3, 2019 as part of this annual network plan.

As mentioned in Section 3, the District will evaluate with CARB, the necessity of PAMS operation at this site in the EMP, which is a PAMS requirement in 40 CFR Part 58, Appendix D. The District is considering discontinuing the speciated VOC measurements at this site since it no longer a requirement per 80 FR 65292. The U.S. EPA published a proposed rule on May 31, 2019 to delay the PAMS requirement until June 1, 2021 to give the state two additional years to acquire necessary equipment and expertise to successfully make the required PAMS measurements by the start of 2021 PAMS season.

North Highlands-Blackfoot Way

The District has been negotiating a lease with the new property manager at North Highlands-Blackfoot Way. If an agreement is not reached, the District will evaluate its options to relocate or discontinue the monitoring station. Additionally, the District will submit a letter to the EPA for the discontinuation of the CO monitor in Spring 2020.

The District is evaluating replacing the PM10 filter based method to a PM10 continuous monitoring at this site. PM10 continuous monitoring provides a real-time air quality information to the public.

Sloughhouse-Sloughhouse Rd.

No change anticipated.

Near-road site #2

40 CFR Part 58 requires state or local air monitoring organization to operate a second near-road monitoring site if any traffic count in the metropolitan area surpasses 250,000 in annual average daily traffic. Sacramento MSA has surpassed the threshold and triggered the requirement. The location of the exceedance is on U.S. Highway 50 east of 15th/16th Street. The District is working with U.S. EPA and CARB to determine the appropriate timing, location, and funding for a second near-road monitoring site.

⁶ Refer to Appendix E and F for email correspondence from U.S. EPA Region 9 to move forward to move forward with the Folsom Construction Project.

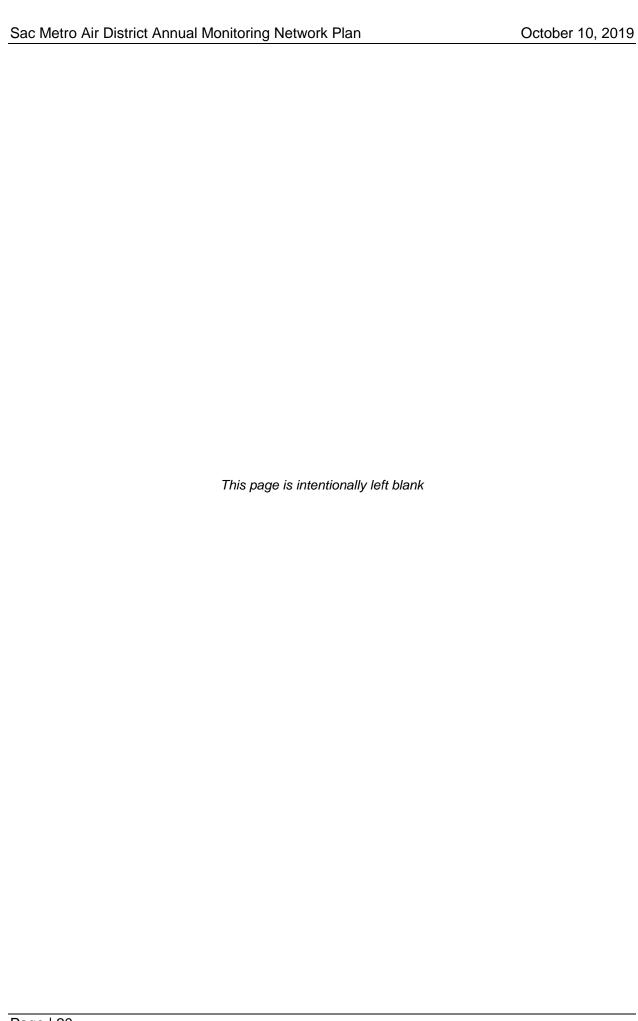
Section 5 Quality Assurance Requirement and Other Monitoring Requirement for the PQAO

40 CFR Part 58, Appendix A, requires monitoring activities to satisfy quality assurance criteria. Most of these activities are required and met on a primary quality assurance organization (PQAO) level. Sac Metro Air District is a part of the CARB's PQAO and works with the PQAO to meet the quality assurance requirements. Currently, there are collocated PM_{2.5} FRM and PM₁₀ FRM monitors at Sacramento-Del Paso Manor. There is a collocated PM_{2.5} FEM monitor at Folsom-Natoma St. For the aforementioned collocated monitors, the primary monitor and audit monitor use the same U.S. EPA FRM/FEM method designation.

The District operates a Pb-PM₁₀ at its Sacramento-Del Paso Manor NCore site. However, it does not have any Pb-PM₁₀ collocated monitor as required by 40 CFR Part 58. As mentioned in Section 4, Recent and Proposed Modification to the Network, the District does not currently have any space at Sacramento-Del Paso Manor to operate a collocation monitor. In addition, the District is evaluating whether it will continue to operate the Pb monitor. If the District continues to operate this monitor, the District will consider installing a collocation monitor after the station has been renovated to a larger footprint and ensure that the monitor meets Pb-PM₁₀ collocation requirements. For complete details on PM and Pb collocation, please refer to the latest edition of Annual Monitoring Network Report published by CARB⁷.

40 CFR Part 58, Appendix D, 4.7.3, requires "each State shall install and operate at least one PM_{2.5} site to monitor for regional background and at least one PM_{2.5} site to monitor regional transport." In CARB's 2018 Annual Monitoring Network Report⁶, it identified Point Reyes National Seashore and San Rafael Wilderness sites as the state's regional background sites and Vallejo as the regional transport site for PM_{2.5}. Please refer to the CARB's 2018 Annual Monitoring Network Report for updates or more information.

⁷ https://www.arb.ca.gov/aqd/amnr/amnr.htm


Section 6 Process to Review Changes to PM_{2.5} Monitoring Network

40 CFR Part 58.10(c) requires this annual network plan to "provide for the review of changes to a $PM_{2.5}$ monitoring network that impact the location of a violating $PM_{2.5}$ monitor." There is no current plan to relocate or discontinue any $PM_{2.5}$ monitor suitable for NAAQS comparison. Any changes to the $PM_{2.5}$ monitoring network with impact to the location of a violating $PM_{2.5}$ monitor will be documented in this section of future annual network plans.

Section 7 Data Submission Requirements

CARB submitted precision, accuracy, and raw data for all District operated monitors for and before 2017. Starting in 2018, Sac Metro Air District submitted its air monitoring data directly to AQS after conducting its data validation process. The quarterly data submittal process also includes Quality Assurance (QA) data required by 40 CFR Part 58. In an agreement with CARB, Sac Metro Air District will also certify all Sac Metro Air District generated data. Since CARB continues weighing and analyzing the PM_{2.5} FRM filters for Sac Metro Air District, CARB will continue to submit and certify that data. CARB will also submit and certify the PM coarse data. Copies of the annual data certification provided to U.S. EPA are provided in Appendix C.

- 2018 Annual data certification submitted: April 25, 2019
- 2018 Annual data certification (PM_{2.5} FRM and PM Coarse only) submitted: April 25, 2019

Appendix A Detailed Site and Monitor information

Detailed site information covered in this appendix reflects air monitoring operation from January 1, 2018-December 31, 2018.

A.1 Sacramento-Bercut Dr.

This is an approved near-road monitoring site. Located one mile from Downtown Sacramento, this site is expected to measure the highest NO_2 concentration due to the emissions from mobile sources on Interstate 5, which is about 20 meters (m) from the site. The site started operation on October 13, 2015.

Table A-1 Sacramento-Bercut Dr. Metadata

Site Name	Sacramento-Bercut
AQS Site No.	06-067-0015
Geographic Coordinates	38.593328°N, 121.503728°W
Location	On the downwind side of Interstate 5, one mile north-northwest of
	downtown Sacramento.
Address	100 Bercut Dr., Sacramento, CA
County	Sacramento
Distance from roadway	Interstate 5: 20 m
	Bercut Dr.: 5 m
Annual Average Daily Traffic	Interstate 5: 202,000 (California Department of Transportation,
(Vehicles/Day)	2017)
	Bercut Dr. south of Richards Blvd.: 2,709 (City of Sacramento,
	2012)
Ground Cover	Pavement, with vegetation
Representative Area (MSA)	SacramentoArden-ArcadeRoseville, CA

Figure A-1 Panoramic view toward north from air monitoring station roof

Figure A-2 Panoramic view toward east from air monitoring station roof

Figure A-3 Panoramic view toward south from air monitoring station roof

Figure A-4 Panoramic view toward west from air monitoring station roof

Figure A-5 Google Earth satellite image of Sacramento-Bercut Dr.

Source: Google Earth, imagery date: 8/16/18

The circle in figure A-5 indicates there are no trees within a 10 m radius, which satisfy the siting criterion that requires drip lines of trees to be at least 10 m away from probes and inlets (40 CFR Part 58, Appendix E). Also, heights of potential flow obstacles were calculated on-site with trigonometry on 6/3/19 and are provided in Tables A-2 thru A-4. With the exception of tree "H," each inlet and sampler have 360° of unrestricted airflow. Tree H is an old growth heritage tree, as defined by Chapter 12.64 of Sacramento City Code (SCC). It is protected by SCC from removal or significant pruning. Since the tree is directly downwind of the emission source, it has limited scavenging effect and does not interfere with the emission source being monitored. Before the air monitoring site was established, U.S. EPA staff had approved for this tree to remain in place⁸.

⁸ Per email correspondence with Elfego Felix, U.S. EPA Region 9, on August 6, 2013

Table A-2 Distance between Object and Inlet or Probe at Sacramento-Bercut Dr.
All units in meter

	Gaseous	
	Probe	PM _{2.5} Inlet
Object A (Tree)	36.58	32.00
Object B (Tree)	24.69	25.60
Object C (Tree)	21.95	22.86
Object D (Tree)	18.29	20.12
Object E (Tree)	15.54	20.12
Object F (Tree)	18.29	22.86
Object G (Tree)	25.60	30.18
Object H (Tree)	34.75	34.75
Object I (Tree)	41.15	39.32

Table A-3 Object Protrusion above Inlet or Probe at Sacramento-Bercut Dr. All units in meter

	Gaseous	
	Probe	PM _{2.5} Inlet
Object A (Tree)	7.9	8.1
Object B (Tree)	1.31	1.41
Object C (Tree)	1.46	1.6
Object D (Tree)	0.94	0.73
Object E (Tree)	4.05	3.82
Object F (Tree)	5.82	6.11
Object G (Tree)	8.20	8.16
Object H (Tree)	19.5	19.6
Object I (Tree)	7.6	7.29

	Gaseous Probe	PM _{2.5} Inlet
Object A (Tree)	4.6	4.0
Object B (Tree)	18.8	18.2
Object C (Tree)	15.0	14.3
Object D (Tree)	19.5	27.6
Object E (Tree)	3.8	5.3
Object F (Tree)	3.1	3.7
Object G (Tree)	3.1	3.7
Object H (Tree)	1.8 ^(A)	1.8 ^(A)
Object I (Tree)	5.4	5.4

⁽A) See discussion on page 23

Site	Sacramento-Bercut Dr	Sacramento-Bercut Dr	
Start Date	10/13/2015	10/13/2015	
Collecting Agency	Sac Metro Air District	Sac Metro Air District	
Analytical Lab	Sac Metro Air District	Sac Metro Air District	
Reporting Agency	Sac Metro Air District	Sac Metro Air District	
Pollutant	NO2	CO	
Parameter Code	42602	42101	
Parameter Occurrence Code	1	42101	
Manufacturer and model	TAPI200UP	TAPI 300U	
Mandiacturer and model	TAF12000F TAF1 3000		
Sampling Method	Instrumental	Instrumental	
Method Code	200	593	
Analysis Method	Photolytic-Chemiluminescence	Gas Filter Correlation	
FRM/FEM/ARM/Other	FEM	FRM	
Monitoring objective	NAAQS comparison, public info, research	NAAQS comparison, public info, research	
Statement of Purpose	Monitors near road emission at region's highest fleet equivalent AADT roadway	Monitors near road emission at region's highest fleet equivalent AADT roadway	
Monitor type	SLAMS	SLAMS	
Affiliation	Near Road	Near Road	
Site type	Source Oriented	Source Oriented	
Spatial scale	Microscale	Microscale	
Sampling Frequency	Continuous	Continuous	
Sampling season	Year Round	Year Round	
Distance from supporting structure or rooftop (m)	1.8	1.8	
Distance from flow obstructions on roof (m)	No obstructions	No obstructions	
Distance from flow obstructions not on roof (m)	34.8	34.8	
Distance from nearest tree drip line (m)	11	11.9	
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	
Distance between collocated PM monitors (m)	Not applicable	Not applicable	
Distance with nearest PM monitor (m)	4.6 m (lo vol)	4.6 m (lo vol)	
Unrestricted airflow (deg)	336	336	
Probe height (m, gal)	4.6	4.6	
Probe material	Teflon Teflon		
Residence time (seconds)	17.9	18.6	
Changes in next 18 months?	No	No	
Frequency of one-point quality control check	Every other day	Every other day	
	5/25/2018	5/25/2018	
Last Performance Evaluation	3/23/2010	JIZJIZU 10	

Site	Sacramento-Bercut Dr			
Start Date	10/30/2015	11/1/2016		
Collecting Agency	Sac Metro Air District	Sac Metro Air District		
Analytical Lab	Sac Metro Air District	CARB		
Reporting Agency	Sac Metro Air District	CARB		
Pollutant	Black Carbon	PM2.5		
Parameter Code	84313	88101		
Parameter Occurrence Code	1	1		
Manufacturer and model	Magee Scientific M633	R & P 2025		
Sampling Method	Aethalometer	Low volume with VSCC		
Method Code	894	145		
Analysis Method	Optical Absorption	Gravimetric		
FRM/FEM/ARM/Other	Other	FRM		
Monitoring objective	Public info, research	NAAQS comparison, public info, research		
Statement of Purpose	Determines component of PM emission at region's highest fleet equivalent AADT roadway	Monitors near road emission at region's highest fleet equivalent AADT roadway		
Monitor type	SLAMS	SLAMS		
Affiliation	Near Road	Near Road		
Site type	Source Oriented	Source Oriented		
Spatial scale	Not applicable	Micro		
Sampling Frequency	Continuous	1 in 3 days		
Sampling season	Year Round	Year Round		
Distance from supporting structure or rooftop (m)	1.8	2.2		
Distance from flow obstructions on roof (m)	No obstructions	No obstructions		
Distance from flow obstructions not on roof (m)	34.8	34.8		
Distance from nearest tree drip line (m)	12	16		
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue		
Distance between collocated PM monitors (m)	Not applicable	Not applicable		
Distance with nearest PM monitor (m)	Not applicable	No other PM monitors		
Unrestricted airflow (deg)	336	336		
Probe height (m, agl)	4.6	5.0		
Probe material	Aluminum	Aluminum		
Residence time (seconds)	Not applicable	Not applicable		
Changes in next 18 months?	No	No		
Frequency of one-point quality control check	Monthly	Monthly		
Last Performance Evaluation	Not applicable	5/25/2018, 11/5/2018		
	• •	<u>'</u>		

Reporting Agency Sac Metro Air District Pollutant Outdoor Temperature Pollutant Outdoor Temperature Parameter Code 62101 61104 61103 Parameter Code 62101 61104 61103 Parameter Cocurrence Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Site	Sacramento-Bercut Dr		
Analytical Lab Sac Metro Air District Sac Metro Air District Pollutant Quetor Air District Pollutant Outdoor Temperature Wind Direction Wind Speed Parameter Code 62101 61104 61103 Parameter Coccurrence Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Start Date	10/30/2015	10/30/2015	10/30/2015
Analytical Lab Sac Metro Air District Sac Metro Air District Pollutant Quetor Air District Pollutant Outdoor Temperature Wind Direction Wind Speed Parameter Code 62101 61104 61103 Parameter Coccurrence Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Pollutant Parameter Code Parameter Code Parameter Cocurrence Code Parameter Cocurrence Code 1 1 1 1 Parameter Cocurrence Code Parameter Cocurrence Code Instrumental Instrumental Instrumental Parameter Code Parameter Cocurrence Code Public info, research Public info,	Analytical Lab			
Pollutant Outdoor Temperature Wind Direction Wind Speed Parameter Code 62101 61104 61103 Parameter Cocurrence Code 1 1 1 1 Parameter Cocurrence Code 1 1 1 1 Parameter Code Code 1 1 1 1 Parameter Code Code Code Code Code Code Code Code	Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Parameter Code Parameter Coccurrence Code Parameter Occurrence Code Parameter Occurrence Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Parameter Occurrence Code Manufacturer and model Climatronics 10093 Climatronics F-460 Climatronics Information Measures Measures Measures Measures Measures Measures Measures Measures Public info, research Near Grad Near Road	Parameter Code		61104	•
Manufacturer and model Climatronics 100093 Climatronics F-460 Climatronics F-460 Sampling Method Instrumental Instrumental Instrumental Method Code 042 020 020 Analysis Method Machine Average Vector Summation Vector Summation FRM/FEM/ARW/Other Other Other Other Monitoring objective Public info, research Public info, research Public info, research Monitoring objective Measures representative meteorology Measures representative meteorology Public info, research Statement of Purpose Measures representative meteorology Measures representative meteorology Measures representative meteorology Monitor type Other Other Other Other Other Affiliation Near Road Near Road Near Road Near Road Site type Not applicable Not applicable Not applicable Not applicable Sampling Frequency Continuous Continuous Continuous Continuous Sampling Frequency Continuous Continuou	Parameter Occurrence Code			
Sampling Method			Climatronics F-460	·
Analysis Method Machine Average Vector Summation Vector Summation FRM/FEM/ARM/Other Other Other Other Monitoring objective Public info, research Public info, research Measures representative meteorology Measures representative meteorology Monitor type Other Other Other Other Affiliation Near Road Near Road Near Road Site type Not applicable Not	Sampling Method		Instrumental	Instrumental
FRM/FEM/ARM/Other Other Other Other Other Other Monitoring objective Public info, research Public info, resear	Method Code	042	020	020
Monitoring objective Public info, research Near Road Near Road Near Road Near Road Not applicable	Analysis Method	Machine Average	Vector Summation	Vector Summation
Statement of Purpose representative meteorology representative meteorology meteorology Monitor type Other Other Other Other Other Affiliation Near Road Near Road Near Road Site type Not applicable Not applicable Not applicable Not applicable Spatial scale Not applicable Not applicable Not applicable Not applicable Sampling Frequency Continuous Continuous Continuous Sampling season Year Round Year Round Year Round Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from flow obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitor (m) Distance with nearest PM monitor (m) Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not appl	FRM/FEM/ARM/Other	Other	Other	Other
Statement of Purpose representative meteorology representative meteorology Monitor type Other Other Other Other Affiliation Near Road Near Road Near Road Site type Not applicable Not applicable Not applicable Spatial scale Not applicable Not applicable Not applicable Sampling Frequency Continuous Continuous Continuous Sampling season Year Round Year Round Year Round Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incincerator flue (m) Distance to furnace or incincerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitors (m) Unrestricted airflow (deg) Probe height (m, agl) Probe material Not applicable N	Monitoring objective	Public info, research	Public info, research	Public info, research
Affiliation Near Road Near Road Near Road Site type Not applicable Not applicable Not applicable Spatial scale Not applicable Not applicable Not applicable Sampling Frequency Continuous Continuous Continuous Sampling season Year Round Year Round Year Round Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from flow obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitors (m) Unrestricted airflow (deg) Probe height (m, agl) Frequency of one-point quality control check Not applicable	Statement of Purpose	representative	representative	representative
Site type Not applicable Sampling Frequency Sampling season Year Round Year Round Year Round Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Not applicable	Monitor type	Other	Other	Other
Spatial scale Not applicable Continuous Continuous Sampling Frequency Continuous Continuous Continuous Sampling season Year Round Year Round Year Round Year Round Distance from supporting structure or rooftop (m) Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from flow obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitor (m) Distance with nearest PM monitor (m) Direct dairflow (deg) Distance with nearest PM monitor (m) Distance between collocated Probe height (m, agl) Distance material Not applicable	Affiliation	Near Road	Near Road	Near Road
Sampling Frequency Sampling season Year Round Year Round Year Round Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from flow obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitors (m) Not applicable	Site type	Not applicable	Not applicable	Not applicable
Sampling season Year Round Year Round Year Round Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from flow obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitor (m) Unrestricted airflow (deg) Probe height (m, agl) Rosupporting structure No supporting structure Not applicable	Spatial scale	Not applicable	Not applicable	Not applicable
Distance from supporting structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from flow obstructions not on roof (m) Distance from flow obstructions not on roof (m) Distance from flow obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitor (m) Distance with nearest PM monitor (m) Unrestricted airflow (deg) Probe height (m, agl) Roof applicable Not applicable	Sampling Frequency	Continuous	Continuous	Continuous
structure or rooftop (m) Distance from flow obstructions on roof (m) Distance from flow obstructions not on roof (m) Distance from flow obstructions not on roof (m) Distance from flow obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitor (m) Distance with nearest PM monitor (m) Unrestricted airflow (deg) Probe height (m, agl) Probe material Rot applicable Not applicable	Sampling season	Year Round	Year Round	Year Round
obstructions on roof (m) Distance from flow obstructions not on roof (m) Not applicable	Distance from supporting structure or rooftop (m)	No supporting structure	No supporting structure	No supporting structure
obstructions not on roof (m) Distance from nearest tree drip line (m) Distance to furnace or incinerator flue (m) Not applicable	Distance from flow obstructions on roof (m)	Not applicable	Not applicable	Not applicable
drip line (m) Distance to furnace or incinerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitor (m) Unrestricted airflow (deg) Probe height (m, agl) Probe material Residence time (seconds) Changes in next 18 months? Not applicable	Distance from flow obstructions not on roof (m)	Not applicable	Not applicable	Not applicable
incinerator flue (m) Distance between collocated PM monitors (m) Distance with nearest PM monitor (m) Unrestricted airflow (deg) Probe height (m, agl) Probe material Residence time (seconds) Changes in next 18 months? Not applicable	Distance from nearest tree drip line (m)	Not applicable	Not applicable	Not applicable
PM monitors (m) Distance with nearest PM monitor (m) Unrestricted airflow (deg) Probe height (m, agl) Probe material Residence time (seconds) Changes in next 18 months? Not applicable	Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue
monitor (m) Unrestricted airflow (deg) Probe height (m, agl) Probe material Residence time (seconds) Changes in next 18 months? Not applicable	Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable
Probe height (m, agl) 10.0 10.0 10.0 Probe material Not applicable Not applicable Not applicable Residence time (seconds) Not applicable Not applicable Not applicable Changes in next 18 months? No No No Frequency of one-point quality control check Not applicable Not applicable Not applicable	Distance with nearest PM monitor (m)	Not applicable	Not applicable	Not applicable
Probe material Not applicable Not applicable Not applicable Residence time (seconds) Not applicable Not applicable Not applicable Changes in next 18 months? No No No Frequency of one-point quality control check Not applicable Not applicable Not applicable	Unrestricted airflow (deg)	336	336	336
Residence time (seconds) Changes in next 18 months? No No No No No No No No No N	Probe height (m, agl)	10.0		10.0
Changes in next 18 months? No No No Frequency of one-point quality control check Not applicable Not applicable	Probe material	Not applicable	Not applicable	Not applicable
Changes in next 18 months? No No No Frequency of one-point quality control check Not applicable Not applicable	Residence time (seconds)	Not applicable		Not applicable
quality control check Not applicable Not applicable Not applicable	Changes in next 18 months?			
	Frequency of one-point quality control check	Not applicable	Not applicable	Not applicable
	Last Performance Evaluation	5/25/18	5/25/18	5/25/18

A.2 Sacramento-Branch Center #2

Sacramento-Branch Center #2 is a PM_{10} monitoring site. This site was established in 2006 to replace the former Sacramento-Branch Center site, which was approximately one-quarter mile to the north. The site was moved because nearby trees at the previous location obstructed the airflow, and the former monitoring site did not meet siting requirements.

The objective of this site is to measure the representative PM₁₀ concentration, as documented in the original site initiation reports filed in the late 1980s.

Table A-4 Sacramento-Branch Center #2 Metadata

	· caciamento Etamen conten //2 motadata
Site Name	Sacramento-Branch Center #2
AQS Site No.	06-067-0284
Geographic Coordinates	38.551290°N, 121.336590°W
Location	Rooftop of building in the middle of County Maintenance Yard,
	located 10 miles east-southeast of downtown Sacramento.
Address	3847 Branch Center Road, Sacramento, CA 95827
County	Sacramento
Distance from roadway	62 m
Annual Average Daily Traffic	Bradshaw Rd South of Old Placerville Rd.: 42,381 (SACDOT,
(Vehicles/Day)	7/13/2017)
Ground Cover	Paved
Representative Area (MSA)	SacramentoArden-ArcadeRoseville, CA

Figure A-6 Panoramic view toward north from air monitoring station roof

Figure A-7 Panoramic view toward east from air monitoring station roof

Figure A-8 Panoramic view toward south from air monitoring station roof

Figure A-9 Panoramic view toward west from air monitoring station roof

Source: Google Earth, imagery date: 10/31/18

The circle in Figure A-10 indicates no trees exist within a 10 m radius, which satisfy a siting criterion that requires drip lines of trees to be at least 10 m away from probes and inlets (40 CFR Part 58, Appendix E). Also, heights of the trees were calculated on-site with trigonometry on 6/16/19. Object C and D marks the tallest tree northeast and southeast of the station, respectively. Analyses in Tables A-5 thru A-7 show the objects identified above do not restrict air flow to the roof top inlets and samplers. Therefore, each inlet and sampler have 360° of unrestricted airflow.

Table A-5 Distance between Object and Inlet or Probe at Sacramento-Branch Center #2
All units in meter

	PM ₁₀ Inlet
Object A (Tree)	37.0
Object B (Tree)	41.0
Object C (Tree)	50.0
Object D (Tree)	50.0

Table A-6 Object Protrusion above Inlet or Probe at Sacramento-Branch Center #2

All units in meter

	PM ₁₀ Inlet
Object A (Tree)	6.7
Object B (Tree)	2.5
Object C (Tree)	13.0
Object D (Tree)	7.8

Table A-7 Distance vs. Protrusion Ratio at Sacramento-Branch Center #2 (must be ≥ 2)⁹

	PM ₁₀ Inlet
Object A (Tree)	5.5
Object B (Tree)	16.4
Object C (Tree)	3.8
Object D (Tree)	6.4

Page | 31

⁹ Per Appendix E to 40 CFR Part 58, "the distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path."

Site	Sacramento-Branch Center		
Start Date	4/1/2006		
Collecting Agency	Sac Metro Air District		
Analytical Lab	Sac Metro Air District		
Reporting Agency	Sac Metro Air District		
Pollutant	PM10		
Parameter Code	81102		
Parameter Occurrence Code	1		
Manufacturer and model	Sierra Anderson 1200		
Sampling Method	Hi Volume		
Method Code	063		
Analysis Method	Gravimetric		
FRM/FEM/ARM/Other	FRM		
Monitoring objective	NAAQS comparison, public info		
Statement of Purpose	Measures PM10 concentration		
Monitor type	SLAMS		
Affiliation	None		
Site type	Highest concentration		
Spatial scale	Neighborhood		
Sampling Frequency	1 in 6 days		
Sampling season	Year Round		
Distance from supporting structure or rooftop (m)	2.0		
Distance from flow obstructions on roof (m)	No obstructions		
Distance from flow obstructions not on roof (m)	No obstructions		
Distance from nearest tree drip line (m)	36.6		
Distance to furnace or incinerator flue (m)	No furnace/flue		
Distance between collocated PM monitors (m)	Not collocated		
Distance with nearest PM monitor (m)	No other PM monitors		
Unrestricted airflow (deg)	360		
Probe height (m, agl)	6.5		
Probe material	Not applicable		
Residence time (seconds)	Not applicable		
Changes in next 18 months?	No		
Frequency of flow rate verification	Monthly		
Last Performance Evaluation	5/21/2018, 11/5/2018		

A.3 Elk Grove-Bruceville

Bruceville air monitoring site is located in a rural area 4 miles south of Elk Grove, CA, and 20 miles south of Downtown Sacramento. It was initiated in 1992 to replace the former Sacramento-Meadowview Road O₃ monitoring site.

This site is the upwind O₃ and ozone precursor monitoring site for the Sac Metro Air District's network, also known as a PAMS Type I site. Adjacent to the air monitoring site is the Franklin Field radar wind profiler (RWP) and radio acoustic sounding system (RASS). These instruments measure wind and temperature in the upper meteorological levels and are operated year-round. Collection of upper air meteorology data is a requirement for the PAMS program. Because the RWP and RASS instruments malfunctioned in October 2016, the District installed a ceilometer at Elk Grove-Bruceville in January 2018 after receiving approval from U.S. EPA.

Table A-8 Elk Grove-Bruceville Metadata

Site Name	Elk Grove-Bruceville
AQS Site No.	06-067-0011
Geographic Coordinates	38.302560°N, 121.420830°W
Location	Rural area located 4 miles south of Elk Grove, CA.
Address	12490 Bruceville Rd, Elk Grove, CA 95758
County	Sacramento
Distance from roadway	76 m
Annual Average Daily Traffic	Bruceville Rd south of Lambert Rd.: 2,340 (SACDOT, 9/21/2017)
(Vehicles/Day)	
Ground Cover	Vegetated
Representative Area (MSA)	SacramentoArden-ArcadeRoseville, CA

Figure A-11 Panoramic view toward north from air monitoring station roof

Figure A-12 Panoramic view toward east from air monitoring station roof

Figure A-13 Panoramic view toward south from air monitoring station roof

Figure A-14 Panoramic view toward west from air monitoring station roof

Elk Grove-Bruceville Buildling Google Earth

Figure A-15 Google Earth satellite image of Elk Grove-Bruceville

Source: Google Earth, imagery date: 10/31/18

The circle in Figure A-15 indicates no trees exist within a 10 m radius, which satisfy the siting criterion that requires drip lines of trees to be at least 10 m away from probes and inlets (40 CFR Part 58, Appendix E). Also, heights of the trees were calculated on-site with trigonometry on 6/17/19. Analyses in Tables A-9 thru A-11 show the objects identified above do not restrict air flow to the roof top inlets and samplers. Therefore, each inlet and sampler have 360° of unrestricted airflow.

Table A-9 Distance between Object and Inlet or Probe at Elk Grove-Bruceville All units in meter

	Gaseous Probe	VOC Probe	PM _{2.5} Inlet
Object A (Tree)	24.0	24.0	24.0
Object B (Tree)	38.0	38.0	38.0
Object C (Tree)	47.0	47.0	47.0
Object D (Building)	36.0	36.0	36.0

Table A-10 Object Protrusion above Inlet or Probe at Elk Grove-Bruceville All units in meter

	Gaseous		
	Probe	VOC Probe	PM _{2.5} Inlet
Object A (Tree)	-0.25	-0.7	-1.2
Object B (Tree)	1.8	1.4	0.9
Object C (Tree)	4.8	4.5	4.0
Object D (Building)	-1.2	-1.59	-2.1

Note: negative value indicates inlet or probe is taller than the object; thus, airflow is not obstructed no matter the distance

Table A-11 Distance vs. Protrusion Ratio at Elk Grove-Bruceville (must be ≥ 2)¹0

	Gaseous Probe	VOC Probe	PM _{2.5} Inlet
Object A (Tree)	N/A	N/A	N/A
Object B (Tree)	21.1	27.1	42.2
Object C (Tree)	9.8	10.4	11.8
Object D (Building)	N/A	N/A	N/A

Note: N/A indicates inlet or probe is taller than the object and airflow is not obstructed; refer to the note in the previous table

Page | 36

¹⁰ Per Appendix E to 40 CFR 58, "the distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path."

Site	Elk Grove-Bruceville			
Start Date	7/1/1992	7/1/1992	7/1/1996	6/1/1994
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Analytical Lab	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	AAC Lab
Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Pollutant	O3	NO2	Total NMHC	Speciated VOC
Parameter Code	44201	42602	43102	43102
Parameter Occurrence Code	1	1	1	2
Manufacturer and model	TAPI 400E	TAPI200UP	TEI 55C	Xontech 910A/912
Sampling Method	Instrumental	Instrumental	Instrumental	6L Pressurized Canister
Method Code	087	200	164	177
Analysis Method	Ultraviolet Absorption	Photolytic- Chemiluminescence	Flame Ionization Detector	Dual Flame Ionization Detector
FRM/FEM/ARM/Other	FEM	FEM	Other	Other
Monitoring objective	NAAQS comparison, public info	NAAQS comparison, public info	Public info, research	Research
Statement of Purpose	Measures background O3 concentration at upwind site	Measures background ozone precursor concentration	Measures background ozone precursor concentration	Measures background ozone precursor concentration
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS
Affiliation	PAMS (Type I)	PAMS (Type I)	PAMS (Type I)	PAMS (Type I)
Site type	Upwind/Background	Upwind/Background	Upwind/Background	Upwind/Background
Spatial scale	Urban	Urban	Not applicable	Not applicable
Sampling Frequency	Continuous	Continuous	Continuous	Episodic Sampling
Sampling season	Year Round	Year Round	Year Round	July thru Sep
Distance from supporting structure or rooftop (m)	1.3	1.2	1.2	1.2
Distance from flow obstructions on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions
Distance from nearest tree drip line (m)	22	22	22	22
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable	Not applicable
Distance with nearest PM monitor (m)	1.1 m (lo vol)	1.1 m (lo vol)	1.1 m (lo vol)	1.1 m (lo vol)
Unrestricted airflow (deg)	360	360	360	360
Probe height (m, agl)	4.5	4.5	4.5	4.9
Probe material	FEP Teflon	FEP Teflon	FEP Teflon	Stainless Steel
Residence time (seconds)	18.1	16.9	16.9	2.0
Changes in next 18 months?	No	No	No	Yes
Frequency of one-point quality control check	Every other day	Every other day	Every other day	Pre- and post- seasonally check
Last Performance Evaluation	5/22/18	5/22/18	Temporary shutdown ^(A)	Not applicable
(A) I.S. EPA Region 9 approve			· · · · · ·	

⁽A) U.S. EPA Region 9 approved the temporary shut down on 12/1/17

Site	Elk Grove-Bruceville			
Start Date	1/30/2003			
Collecting Agency	Sac Metro Air District			
Analytical Lab	Sac Metro Air District			
-	Sac Metro Air District			
Reporting Agency				
Pollutant	PM2.5			
Parameter Code	88501			
Parameter Occurrence Code	3			
Manufacturer and model	Met One 1020 BAM			
Sampling Method	Very sharp cut cyclone			
Method Code	731			
Analysis Method	Beta Attenuation			
FRM/FEM/ARM/Other	Other			
Monitoring objective	Public info ^(A)			
Statement of Purpose	Measures background concentration and transport of PM2.5 from San Joaquin Valley for PM2.5 forecasting			
Monitor type	SPM			
Affiliation	None			
Site type	General/Background			
Spatial scale	Urban			
Sampling Frequency	Continuous			
Sampling season	Year Round			
Distance from supporting structure or rooftop (m)	2.1			
Distance from flow obstructions on roof (m)	No obstructions			
Distance from flow obstructions not on roof (m)	No obstructions			
Distance from nearest tree drip line (m)	21.0			
Distance to furnace or incinerator flue (m)	No furnace/flue			
Distance between collocated PM monitors (m)	Not collocated			
Distance with nearest PM monitor (m)	Not applicable			
Unrestricted airflow (deg)	360			
Probe height (m, agl)	5.4			
Probe material	Not applicable			
Residence time (seconds)	Not applicable			
Changes in next 18 months?	, ''			
Frequency of flow rate verification	Bi-monthly			
Last Performance Evaluation	5/22/2018 11/0/2019			
Last Performance Evaluation 5/22/2018, 11/9/2018 (A) This PM2.5 monitor is not comparable to NAAQS because it does not meet				

⁽A) This PM2.5 monitor is not comparable to NAAQS because it does not meet reference method or equivalent method designation requirements

Site	Elk Grove-Bruceville			
Start Date	8/1/1996	8/1/1996	7/1/1997	8/1/1997
Collecting Agency	Sac Metro Air District			
Analytical Lab	Sac Metro Air District			
Reporting Agency	Sac Metro Air District			
Pollutant	Outdoor Temperature	Relative Humidity	Barometric Pressure	Precipitation
Parameter Code	62101	62201	64101	65102
Parameter Occurrence Code	1	1	1	1
Manufacturer and model	Climatronics 100093	Climatronics 101669	Climatronics 101448	Climatronics 100508
Sampling Method	Instrumental	Instrumental	Instrumental	Bucket
Method Code	042	012	011	011
Analysis Method	Machine Average	Hygroscopic Plastic Film	Aneroid	Continuous or Incremental
FRM/FEM/ARM/Other	Other	Other	Other	Other
Monitoring objective	Public info	Public info	Public info	Public info
Statement of Purpose	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology
Monitor type	Other	Other	Other	Other
Affiliation	PAMS (Type I)	PAMS (Type I)	PAMS (Type I)	PAMS (Type I)
Site type	Not applicable	Not applicable	Not applicable	Not applicable
Spatial scale	Not applicable	Not applicable	Not applicable	Not applicable
Sampling Frequency	Continuous	Continuous	Continuous	Continuous
Sampling season	Year Round	Year Round	Year Round	Year Round
Distance from supporting structure or rooftop (m)	No supporting structure	No supporting structure	No supporting structure	No supporting structure
Distance from flow obstructions on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions
Distance from nearest tree drip line (m)	Not applicable	Not applicable	Not applicable	Not applicable
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable	Not applicable
Distance with nearest PM monitor (m)	Not applicable	Not applicable	Not applicable	Not applicable
Unrestricted airflow (deg)	360	360	360	360
Probe height (m, agl)	10.0	10.0	10.0	2.3
Probe material	Not applicable	Not applicable	Not applicable	Not applicable
Residence time (seconds)	Not applicable	Not applicable	Not applicable	Not applicable
Changes in next 18 months?	No	No	No	No
Frequency of one-point quality control check	N/A	N/A	N/A	N/A
Last Performance Evaluation	Temporary shutdown ^(A)	Not applicable	Temporary shutdown ^(A)	Not applicable
	ed the temporary shut dow		, , , , , , , , , , , , , , , , , , , ,	11

⁽A) U.S. EPA Region 9 approved the temporary shut down on 4/15/16

Site	Elk Grove-Bruceville			
Start Date	8/1/1996	8/1/1997	8/1/1996	8/1/1996
Collecting Agency	Sac Metro Air District			
Analytical Lab	Sac Metro Air District			
Reporting Agency	Sac Metro Air District			
Pollutant	Solar Radiation	UV Radiation	Wind Direction	Wind Speed
Parameter Code	63301	63302	61104	61103
Parameter Occurrence Code	1	1	1	1
Manufacturer and model	Climatronics 100848	Climatronics 100TUVR	Climatronics F-460	Climatronics F-460
Sampling Method	Instrumental	Instrumental	Instrumental	Instrumental
Method Code	011	011	020	020
Analysis Method	Pyranometer	UV Radiometer (Photometer)	Vector Summation	Vector Summation
FRM/FEM/ARM/Other	Other	Other	Other	Other
Monitoring objective	Public info	Public info	Public info, research	Public info, research
Statement of Purpose	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology
Monitor type	Other	Other	Other	Other
Affiliation	PAMS (Type I)	PAMS (Type I)	PAMS (Type I)	PAMS (Type I)
Site type	Not applicable	Not applicable	Not applicable	Not applicable
Spatial scale	Not applicable	Not applicable	Not applicable	Not applicable
Sampling Frequency	Continuous	Continuous	Continuous	Continuous
Sampling season	Year Round	Year Round	Year Round	Year Round
Distance from supporting structure or rooftop (m)	No supporting structure	No supporting structure	No supporting structure	No supporting structure
Distance from flow obstructions on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions
Distance from nearest tree drip line (m)	Not applicable	Not applicable	Not applicable	Not applicable
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable	Not applicable
Distance with nearest PM monitor (m)	Not applicable	Not applicable	Not applicable	Not applicable
Unrestricted airflow (deg)	360	360	360	360
Probe height (m, agl)	10.0	10.0	10.0	10.0
Probe material	Not applicable	Not applicable	Not applicable	Not applicable
Residence time (seconds)	Not applicable	Not applicable	Not applicable	Not applicable
Changes in next 18 months?	No	No	No	No
Frequency of one-point quality control check	N/A	N/A	N/A	N/A
Last Performance Evaluation	Not applicable	Not applicable	Temporary shutdown ^(A)	Temporary shutdown ^(A)
(A) I.S. EPA Region 9 approve			1	1 7

⁽A) U.S. EPA Region 9 approved the temporary shut down on 4/15/16

Site	Elk Grove-Bruceville					
Start Date	6/1/1996					
Collecting Agency	Sac Metro Air District					
Analytical Lab	N/A					
Reporting Agency	N/A					
Pollutant	Upper Level Wind and Virtual Temperature					
Parameter Code	Not applicable					
Parameter Occurrence Code	Not applicable					
Manufacturer and model	Radian LAP-3000 with RASS option					
	·					
Sampling Method	Not applicable					
Method Code	Not applicable					
Analysis Method	915 MHz Radar Wind Profiler, with RASS					
FRM/FEM/ARM/Other	Other					
Monitoring objective	Public info, research					
Statement of Purpose	Measures representative upper level meteorology					
Monitor type	Other					
Affiliation	PAMS (Type I)					
Site type	Not applicable					
Spatial scale	Not applicable					
Sampling Frequency	Continuous					
Sampling season	Year Round					
Distance from supporting	Tour Round					
structure or rooftop (m)	No supporting structure					
Distance from flow obstructions on roof (m)	No obstructions					
Distance from flow obstructions not on roof (m)	No obstructions					
Distance from nearest tree drip line (m)	> 20 m					
Distance to furnace or incinerator flue (m)	No furnace/flue					
Distance between collocated PM monitors (m)	Not applicable					
Distance with nearest PM monitor (m)	Not applicable					
Unrestricted airflow (deg)	360					
Probe height (m, agl)	Not applicable					
Probe material	Not applicable					
Residence time (seconds)	Not applicable					
Changes in next 18 months?	No No					
Frequency of one-point						
quality control check	N/A					
Last Performance Evaluation	Malfunctioned ^(A)					
(A) According to the PAMS Network Operations report submitted to U.S. EPA on						

⁽A) According to the PAMS Network Operations report submitted to U.S. EPA on 9/15/17 and internal District QC document, the radar wind profiler malfunctioned starting 10/25/16

A.4 Sacramento-Del Paso Manor

This air monitoring site was initiated in 1979 and eventually became the largest air monitoring site in the Sacramento Valley Air Basin. This site is also one of the largest in Northern California, in terms of number of parameters measured. In October 2009, U.S. EPA Region 9 approved Sacramento-Del Paso Manor as an NCore site. This is one of six NCore sites operating in California. Also, Sacramento-Del Paso Manor is a design value site for PM_{2.5}, which means that this site has the highest PM_{2.5} design value in the PM_{2.5} non-attainment area.

Located just downwind of Downtown Sacramento, Sacramento-Del Paso Manor is a PAMS Type II primary site. It monitors for NMHC year-round and speciated VOC and carbonyl during the summer.

Speciation monitors at this site are part of the Chemical Speciation Network and Speciated Trends Network. A URG3000N sampler was installed in April 2009. The Met One Spiral Aerosol Speciation Sampler has been in service for many years.

Table A-12 Sacramento-Del Paso Manor Metadata

1 4510 71	i divito / i i i i i didici di i i i i i i i i i i				
Site Name	Sacramento-Del Paso Manor				
AQS Site No.	06-067-0006				
Geographic Coordinates	38.613740°N, 121.368040°W				
Location	Neighborhood park located 7 miles east-northeast of downtown				
	Sacramento.				
Address	2701 Avalon Drive, Sacramento, CA 95821				
County	Sacramento				
Distance from roadway	56 m				
Annual Average Daily Traffic	Avalon Dr. south of Annette St.: 1,000 (estimated, two-lanes				
(Vehicles/Day)	suburban local residential road)				
Ground Cover	Vegetated				
Representative Area (MSA)	SacramentoArden-ArcadeRoseville, CA				

Figure A-16 Panoramic view toward north from air monitoring station roof

Figure A-17 Panoramic view toward east from air monitoring station roof

Figure A-18 Panoramic view toward south from air monitoring station roof

Figure A-19 Panoramic view toward west from air monitoring station roof

Figure A-20 Google Earth satellite image of Sacramento-Del Paso Manor

Source: Google Earth, imagery date: 10/31/18 before tree removal

The latest satellite photo showed construction activities at Sacramento-Del Paso Manor due to remodeling of a nearby elementary school. On September 13, 2018, a construction contractor began preparing a staging area approximately 30 meters east of the air monitoring site. New buildings for the elementary school will be constructed in the grassy field south of the site. A construction crew had removed four trees (Trees A, B, J, and K) within a 50-meter radius of the monitoring site to facilitate construction activities and these tree removals are not reflected in the Google Earth image above. During the construction period, the District will review its air monitoring data for construction related impact and apply the appropriate information qualifier code to the data. Construction is expected to be completed in Fall 2020.

Table A-13 Distance between Object and Inlet or Probe at Sacramento-Del Paso Manor All units in meter

All utilits in meter							
					Black		
	Gaseous		PM ₁₀ Inlet	PM ₁₀ Inlet	Carbon		
	Probe	NO _Y Probe	(Primary)	(Collocated)	Inlet	VOC Inlet	
Object A (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	
Object B (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	
Object C (Tree)	27.43	22.86	23.00	23.00	25.00	27.43	
Object D (Tree)	42.06	35.66	35.66	36.58	39.32	41.15	
Object E (Tree)	55.78	53.04	53.04	53.95	54.86	56.69	
Object F (Tree)	31.09	29.26	29.26	30.18	30.18	32.00	
Object G (Tree)	46.63	44.81	44.81	45.72	46.63	47.55	
Object H (Building)	17.40	16.50	19.20	16.50	16.50	17.40	
Object I (Tree)	40.23	42.06	41.15	43.89	41.15	41.15	
Object J (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	
Object K (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	
			PM _{10-2.5}			Carbon	
	PM _{2.5} Inlet	PM _{2.5} Inlet	Inlet	PM _{2.5} Inlet	PM _{2.5} Inlet	Speciation	
	(Primary)	(Collocated)	(Primary)	(Continuous)	(Speciation)	Inlet	
Object A (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	
Object B (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	
Object C (Tree)	28.00	28.00	26.00	28.00	28.00	26.00	
Object D (Tree)	42.06	42.06	41.15	42.06	41.15	42.06	
Object E (Tree)	55.78	55.78	54.86	55.78	55.78	57.61	
Object F (Tree)	30.18	30.18	30.18	32.00	31.09	31.09	
Object G (Tree)	47.55	47.55	47.55	48.46	49.38	49.38	
Object H (Building)	16.50	15.50	15.50	17.40	20.10	18.30	
Object I (Tree)	39.32	38.40	39.32	41.15	43.89	41.15	
Object J (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	
Object K (Tree)	N/A	N/A	N/A	N/A	N/A	N/A	

Note: N/A indicates the object has been removed and is no longer an obstruction due to the new construction.

Table A-14 Object Protrusion above Inlet or Probe at Sacramento-Del Paso Manor

					Black	
	Gaseous		PM ₁₀ Inlet	PM ₁₀ Inlet	Carbon	
	Probe	NO _Y Probe	(Primary)	(Collocated)	Inlet	VOC Inlet
Object A (Tree)	N/A	N/A	N/A	N/A	N/A	N/A
Object B (Tree)	N/A	N/A	N/A	N/A	N/A	N/A
Object C (Tree)	2.64	-2.06	2.64	2.64	2.54	2.84
Object D (Tree)	3.97	-0.73	3.97	3.97	3.87	4.10
Object E (Tree)	8.37	-3.67	8.37	8.37	8.27	8.57
Object F (Tree)	5.72	1.02	5.72	5.72	5.62	5.93
Object G (Tree)	6.90	-2.20	6.90	6.90	6.80	7.10
Object H (Building)	-0.78	-8.78	-0.78	-0.78	-0.68	-0.88
Object I (Tree)	4.10	-0.64	4.10	4.10	4.00	4.30
Object J (Tree)	N/A	N/A	N/A	N/A	N/A	N/A
Object K (Tree)	N/A	N/A	N/A	N/A	N/A	N/A
			PM _{10-2.5}			Carbon
	PM _{2.5} Inlet	PM _{2.5} Inlet	Inlet	PM _{2.5} Inlet	PM _{2.5} Inlet	Speciation
	(Primary)	(Collocated)	(Primary)	(Continuous)	(Speciation)	Inlet
Object A (Tree)	N/A	N/A	N/A	N/A	N/A	N/A
Object B (Tree)	N/A	N/A	N/A	N/A	N/A	N/A
Object C (Tree)	2.74	2.74	2.74	2.64	2.64	2.74
Object D (Tree)	4.00	4.00	4.00	3.97	3.97	4.00
Object E (Tree)	8.47	8.47	8.47	8.37	8.37	8.47
Object F (Tree)	5.83	5.83	5.83	5.72	5.72	5.83
Object G (Tree)	7.00	7.00	7.00	6.90	6.90	7.00
Object H (Building)	-0.88	-0.88	-0.88	-0.78	-0.78	-0.88
Object I (Tree)	4.20	4.20	4.20	4.10	4.10	4.20

Object J (Tree)	N/A	N/A	N/A	N/A	N/A	N/A
Object K (Tree)	N/A	N/A	N/A	N/A	N/A	N/A

Note: Negative value indicates inlet or probe is taller than the object; thus, airflow is not obstructed no matter the distance. N/A indicates the object has been removed and is no longer an obstruction due to the new construction.

Table A-15 Distance vs. Protrusion Ratio at Sacramento-Del Paso Manor (must be ≥ 2)¹¹

(iiust be ≥ 2)·							
				Black			
Gaseous		PM ₁₀ Inlet	PM ₁₀ Inlet	Carbon			
Probe	NO _Y Probe	(Primary)	(Collocated)	Inlet	VOC Inlet		
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A		
10.4	N/A	8.7	8.7	8.9	9.6		
7.0	N/A	9.0	9.0	6.5	10.0		
8.2	N/A	6.3	6.3	7.9	6.6		
3.8	28.7	5.1	5.1	3.7	5.4		
6.3	N/A	6.5	6.5	6.3	6.6		
N/A	N/A	N/A	N/A	N/A	N/A		
9.8	N/A	10.0	10.0	4.3	9.6		
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A		
		DM			Carbon		
PMos Inlet	PMos Inlet		DMos Inlat	DMos Inlat	Speciation		
			-	-	Inlet		
			·		N/A		
					N/A		
					9.5		
				10.4	10.5		
	6.6	6.5	6.7	6.7	6.8		
5.2	5.2	5.2	5.6	5.4	5.3		
6.8	6.8	6.8	7.0	7.2	7.1		
N/A	N/A	N/A	N/A	N/A	N/A		
9.4	9.4	9.4	10.0	10.7	9.8		
N/A	N/A	N/A	N/A	N/A	N/A		
1 4/ / 1	1 4/ / 1	1 1/7 1	. 4// .	1 4// 1	1 1// 1		
	Probe N/A N/A 10.4 7.0 8.2 3.8 6.3 N/A 9.8 N/A N/A PM _{2.5} Inlet (Primary) N/A N/A 10.2 10.5 6.6 5.2 6.8 N/A 9.4	Gaseous Probe N/A N/A N/A N/A N/A 10.4 N/A 3.8 28.7 6.3 N/A	Probe NOy Probe (Primary) N/A N/A N/A N/A N/A N/A N/A N/A N/A 10.4 N/A 8.7 7.0 N/A 9.0 8.2 N/A 6.3 3.8 28.7 5.1 6.3 N/A 6.5 N/A N/A N/A N/A N/A <	Gaseous Probe NOy Probe PM10 Inlet (Primary) PM10 Inlet (Collocated) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 10.4 N/A N/A N/A 10.5 N/A N/A N/A N/A 10.3 N/A N/A N/A N/A 10.4 N/A N/A N/A N/A 10.4 N/A N/A N/A N/A 10.5 Inlet (Collocated) (Pimary) (Continuous) 10.4 N/A N/A N/A 10.5 10.5 10.3 10.6 10.5 10.5 10.3 10.6	Gaseous Probe NOy Probe PM10 Inlet (Primary) PM10 Inlet (Collocated) Black Carbon Inlet N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 10.4 N/A N/A N/A N/A 7.0 N/A 9.0 9.0 6.5 8.2 N/A 6.3 6.3 7.9 3.8 28.7 5.1 5.1 3.7 6.3 N/A 6.5 6.5 6.3 N/A N/A N/A N/A N/A 9.8 N/A 10.0 10.0 4.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A PM2.5 Inlet (Primary) (Collocated) (PM2.5 Inlet (Continuous) (Speciation) N/A N/A N/A N/A N/A N/A N/A N/A		

Note: N/A indicates inlet or probe is taller than the object and airflow is not obstructed; refer to the note in the previous table

Page | 46

-

¹¹ Per Appendix E to 40 CFR 58, "the distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path."

Start Date				
	1/1/1981	1/1/1981	1/1/1980	1/1/1983
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Analytical Lab	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Pollutant	O3	CO	NO2	NOY
Parameter Code	44201	42101	42602	42600
Parameter Occurrence Code	1	1	1	1
Manufacturer and model	TAPI 400E	TAPI 300EU	TAPI200UP	TEI 42I-Y
Sampling Method	Instrumental	Instrumental	Instrumental	Instrumental
Method Code	087	593	200	574
Analysis Method	Ultraviolet Absorption	Gas Filter Correlation	Photolytic- Chemiluminescence	Chemiluminescence
FRM/FEM/ARM/Other	FEM	FRM	FEM	Other
Monitoring objective	NAAQS comparison, public info, research	NAAQS comparison, public info, research	NAAQS comparison, public info, research	Public info, research
	Measures elevated summer O3 levels near the downwind edge of the central business district	Measures representative wintertime CO concentration in populated area	Measures O3 precursor emission near downwind edge of central business district	Measures representative concentration in populated area
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS
Affiliation	NCORE, PAMS (Type II)	NCORE, PAMS (Type II)	NCORE, PAMS (Type II)	NCORE
Site type	Population Exposure	Population Exposure	Population Exposure	Population Exposure
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Not applicable
Sampling Frequency	Continuous	Continuous	Continuous	Continuous
Sampling season	Year Round	Year Round	Year Round	Year Round
Distance from supporting structure or rooftop (m)	2.0	2.0	2.0	Not applicable
Distance from flow obstructions on roof	No obstructions	No obstructions	No obstructions	No obstructions
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions
Distance from nearest tree drip line (m)	26.0	26.0	26.0	23.0
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable	Not applicable
Distance with nearest PM monitor (m)	1.1 m (lo vol)	1.1 m (lo vol)	1.1 m (lo vol)	Not applicable
Unrestricted airflow (deg)	360	360	360	360
Probe height (m, agl)	5.3	5.3	5.3	10.0
Probe material	FEP Teflon	FEP Teflon	FEP Teflon	FEP Teflon
Residence time (seconds)	15.2	13.4	15.0	4.0
Changes in next 18 months?	No	No	No	No
Frequency of one-point quality control check	Every fourth day	Every fourth day	Every fourth day	Every fourth day
Last Performance Evaluation	11/15/18	11/14/18	2/5/2018, 11/15/2018	Not applicable

Site	Sacramento-Del Paso Manor						
Start Date	1/1/1980	8/1/1994	9/22/2000	1/1/2001			
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District			
Analytical Lab	Sac Metro Air District	Sac Metro Air District	AAC Lab	AAC Lab			
Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District			
Pollutant	SO2	Total NMHC	Speciated VOC	Carbonyl			
Parameter Code	42401	43102	43102	Multiple			
Parameter Occurrence Code	1	2	1	1			
Manufacturer and model	TAPI 100EU	TEI 55C	Xontech 910A/912	Xontech 925			
Sampling Method	Instrumental	Instrumental	6L Pressurized Canister	DNPH Silica gel			
Method Code	600	164	123	202			
Analysis Method	Ultraviolet Fluorescence	Flame Ionization Detector	Dual Flame Ionization Detector	(multiple)			
FRM/FEM/ARM/Other	FEM	Other	Other	Other			
Monitoring objective	NAAQS comparison, public info, research	Public info, research	Research	Research			
Statement of Purpose	Measures representative concentration in populated area	Measures O3 precursor emission near downwind edge of central business district	Measures O3 precursor emission near downwind edge of central business district	Measures O3 precursor emission near downwind edge of central business district			
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS			
Affiliation	NCORE	PAMS (Type II)	PAMS (Type II)	PAMS (Type II)			
Site type	Population Exposure	Population Exposure	Population Exposure	Population Exposure			
Spatial scale	Urban	Not applicable	Not applicable	Not applicable			
Sampling Frequency	Continuous	Continuous	1 in 3 days	1 in 3 days			
Sampling season	Year Round	Year Round	July thru Sep	July thru Sep			
Distance from supporting structure or rooftop (m)	2.0	2.0	2.2	2.2			
Distance from flow obstructions on roof	No obstructions	No obstructions	No obstructions	No obstructions			
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions			
Distance from nearest tree drip line (m)	26.0	26.0	26.0	26.0			
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue			
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable	Not applicable			
Distance with nearest PM monitor (m)	1.1 m (lo vol)	1.1 m (lo vol)	1.0 m (lo vol)	1.0 m (lo vol)			
Unrestricted airflow (deg)	360	360	360	360			
Probe height (m, agl)	5.3	5.3	5.5	5.5			
Probe material	FEP Teflon	FEP Teflon	Stainless Steel	Stainless Steel			
Residence time (seconds)	14.7	17.0	3.0	3.0			
Changes in next 18 months?	No	No	No	No			
Frequency of one-point quality control check	Every fourth day	Every fourth day	Pre- and post- seasonally check	Pre- and post- seasonally check			
Last Performance Evaluation	11/14/18	Temporary shutdown ^(A)	Not applicable	Not applicable			
(A) U.S. EPA Region 9 approve			11	11			

⁽A) U.S. EPA Region 9 approved the temporary shut down on 12/1/17

Site	Sacramento-Del Paso Manor				
Start Date	1/1/1998	1/1/1986	1/1/1986		
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District		
Analytical Lab	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District		
Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District		
Pollutant	Black Carbon	PM10 (Primary monitor)	PM10 (Audit monitor)		
Parameter Code	84313	81102	81102		
Parameter Occurrence Code	1	1	2		
Manufacturer and model	Magee Scientific M633	Sierra Anderson 1200	Sierra Anderson 1200		
Sampling Method	Aethalometer	Hi Volume	Hi Volume		
Method Code	894	063	063		
Analysis Method	Optical Absorption	Gravimetric	Gravimetric		
FRM/FEM/ARM/Other	Other	FRM	FRM		
Traver Enter a day out of	Outo				
Monitoring objective	Research	NAAQS comparison, public info	NAAQS comparison, public info		
Statement of Purpose	Installed for CRPAQS ^(A) study in 1999	Measures wintertime elevated PM level from motor vehicles and residential wood combustion	Collocated for QA purpose and provides substitute data if necessary		
Monitor type	SPM	SLAMS	SLAMS		
Affiliation	None	None	None		
Site type	Population Exposure	Population Exposure	Population Exposure		
Spatial scale	Not applicable	Neighborhood	Neighborhood		
Sampling Frequency	Continuous	1 in 6 days	1 in 6 days		
Sampling season	Year Round	Year Round	Year Round		
Distance from supporting structure or rooftop (m)	1.9	2.0	2.0		
Distance from flow obstructions on roof	No obstructions	No obstructions	No obstructions		
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions		
Distance from nearest tree drip line (m)	25.0	23.0	23.0		
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue		
Distance between collocated PM monitors (m)	Not applicable	2.2 m	2.2 m		
Distance with nearest PM monitor (m)	1.8 m (lo vol)	2.1 m (lo vol)	2.2 m (hi vol)		
Unrestricted airflow (deg)	360	360	360		
Probe height (m, agl)	5.2	5.3	5.3		
Probe material	Aluminum	Not applicable	Not applicable		
Residence time (seconds)	Not applicable	Not applicable	Not applicable		
Changes in next 18 months?	No	No	No		
Frequency of flow rate verification	Monthly	Monthly	Monthly		
Last Performance Evaluation	Not applicable	4/25/18, 11/15/18	4/25/18, 11/15/18		
(A) California Regional Particul		,	,		

(A) California Regional Particulate Air Quality Study

Site	Sacramento-Del Paso Manor						
Start Date	1/1/1999	2/1/1999	5/1/2000	2/1/2000			
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District			
Analytical Lab	CARB	CARB	N/A	RTI			
Reporting Agency	CARB	CARB	CARB	RTI			
Pollutant	PM2.5 (Primary monitor)	PM2.5 (Audit monitor)	PM2.5	PM2.5 Mass Speciated			
Parameter Code	88101	88101	88502	88502			
Parameter Occurrence Code	1	2	3	5			
Manufacturer and model	R & P 2025	R & P 2025	Met One 1020 BAM	Met One SASS			
Sampling Method	Low volume with VSCC	Low volume with VSCC	Very sharp cut cyclone	Sharp cut cyclone			
Method Code	145	145	731	810			
Analysis Method	Gravimetric	Gravimetric	Beta Attenuation	Gravimetric			
FRM/FEM/ARM/Other	FRM	FRM	Other	Other			
Monitoring objective	NAAQS Comparison, research, public info	NAAQS Comparison, research	Public info, research ^(A)	Research			
Statement of Purpose	Measures wintertime elevated PM level from motor vehicles and residential wood combustion	Collocated for QA purpose and provides substitute data if necessary	Provides real time PM Measurement from motor vehicles and residential wood combustion	Provides speciation data on urban PM emission			
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS			
Affiliation	NCORE	NCORE	NCORE	CSN STN, NCORE			
Site type	Highest concentration, population exposure	Highest concentration, population exposure	Highest concentration, population exposure	Highest concentration, population exposure			
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood			
Sampling Frequency	1 in 3 days	1 in 12 days	Continuous	1 in 3 days			
Sampling season	Year Round	Year Round	Year Round	Year Round			
Distance from supporting structure or rooftop (m)	2.1	2.1	2.0	2.0			
Distance from flow obstructions on roof	No obstructions	No obstructions	No obstructions	No obstructions			
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions	No obstructions			
Distance from nearest tree drip line (m)	28.0	28.0	28.0	26.0			
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue			
Distance between collocated PM monitors (m)	1.6 m	1.6 m	Not applicable	Not applicable			
Distance with nearest PM monitor (m)	1.5 m (lo vol)	1.6 m (lo vol)	1.4 (lo vol)	2.2 m (hi vol)			
Unrestricted airflow (deg)	360	360	360	360			
Probe height (m, agl)	5.4	5.4	5.3	5.3			
Probe material	Not applicable	Not applicable	Not applicable	Not applicable			
Residence time (seconds)	Not applicable	Not applicable	Not applicable	Not applicable			
Changes in next 18 months?	No	No	No	No			
Frequency of flow rate verification	Monthly	Monthly	Bi-monthly	Monthly			
Last Performance Evaluation	4/25/18, 11/15/18	4/25/18, 11/15/18	4/25/18, 11/15/18	3/30/17			
(A) This PM2.5 monitor is not c							

⁽A) This PM2.5 monitor is not comparable to NAAQS because it does not meet reference method or equivalent method designation requirements

Site Sacramento-Del Paso Manor						
Start Date	4/1/2009	4/1/2012	4/1/2012			
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District			
Analytical Lab	RTI	CARB	Eastern Research Group			
Reporting Agency	RTI	CARB	Sac Metro Air District			
Pollutant	OC & EC	PM10	Pb			
Parameter Code	(multiple) ^(A)	85101	85129			
Parameter Occurrence Code	5	7	4			
Manufacturer and model	URG 3000N	R & P 2025	R & P 2025			
Sampling Method	Quartz filter and cyclone inlet	Low volume with VSCC	Low volume with VSCC			
Method Code	842, 826	127	811			
Analysis Method	(multiple)	Gravimetric	X-Ray Fluorescence (EDXRF)			
FRM/FEM/ARM/Other	Other	FRM	FRM			
Monitoring objective	Research	Public info, research	NAAQS comparison, public info, research			
Statement of Purpose	Provides speciation data on urban PM emission	Measures PM mass to provide PM10-2.5 data	Measures representative Pb concentration			
Monitor type	SLAMS	Other	SLAMS			
Affiliation	CSN STN,	None	NCORE (Non-source)			
Annation	NCORE	None	NOONE (Non-source)			
Site type	Highest concentration	Population Exposure	Population Exposure			
Spatial scale	Neighborhood	Neighborhood	Urban			
Sampling Frequency	1 in 3 days	1 in 3 days	1 in 6 days			
Sampling season	Year Round	Year Round	Year Round			
Distance from supporting structure or rooftop (m)	2.1	2.1	2.1			
Distance from flow obstructions on roof	No obstructions	No obstructions	No obstructions			
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions			
Distance from nearest tree drip line (m)	28.0	26.0	26.0			
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue			
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable			
Distance with nearest PM monitor (m)	1.7 m (lo vol)	1.9 m (lo vol)	1.9 (lo vol)			
Unrestricted airflow (deg)	360	360	360			
Probe height (m, agl)	5.4	5.4	5.4			
Probe material	Not applicable	Not applicable	Not applicable			
Residence time (seconds)	Not applicable	Not applicable	Not applicable			
Changes in next 18 months?	No	No	No			
Frequency of flow rate verification	Monthly	Monthly	Monthly			
Last Performance Evaluation	3/30/17	4/25/18, 11/15/18	4/25/18, 11/15/18			
A) 88355, 88357, 88370, 88374, 88375, 88376, 88377, 88378, 88380, 88383, 88384, 88385, 88388						

⁽A) 88355, 88357, 88370, 88374, 88375, 88376, 88377, 88378, 88380, 88383, 88384, 88385, 88388

Site	Sacramento-Del Paso Manor						
Start Date	8/1/1994	8/1/1994	9/1/1994	8/1/1994	8/1/1994		
Collecting Agency	Sac Metro Air District						
Analytical Lab	Sac Metro Air District						
Reporting Agency	Sac Metro Air District						
Pollutant	Outdoor Temperature	Relative Humidity	Solar Radiation	Wind Direction	Wind Speed		
Parameter Code	62101	62201	63301	61104	61103		
Parameter Occurrence Code	1	1	1	1	1		
Manufacturer and model	Climatronics 100093	Climatronics 101669	Climatronics 100848	Climatronics F-460	Climatronics F-460		
Sampling Method	Instrumental	Instrumental	Instrumental	Instrumental	Instrumental		
Method Code	042	012	011	020	020		
Analysis Method	Machine Average	Hygroscopic Plastic Film	Pyranometer	Vector Summation	Vector Summation		
FRM/FEM/ARM/Other	Other	Other	Other	Other	Other		
Monitoring objective	Public info, research	Public info, research	Public info	Public info, research	Public info, research		
Statement of Purpose	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology		
Monitor type	SLAMS	SLAMS	Other	Other	Other		
Affiliation	NCORE, PAMS (Type II)						
Site type	Not applicable						
Spatial scale	Not applicable						
Sampling Frequency	Continuous	Continuous	Continuous	Continuous	Continuous		
Sampling season	Year Round						
Distance from supporting structure or rooftop (m)	No supporting structure						
Distance from flow obstructions on roof	No obstructions						
Distance from flow obstructions not on roof (m)	No obstructions						
Distance from nearest tree drip line (m)	Not applicable						
Distance to furnace or incinerator flue (m)	No furnace/flue						
Distance between collocated PM monitors (m)	Not applicable						
Distance with nearest PM monitor (m)	Not applicable						
Unrestricted airflow (deg)	360	360	360	360	360		
Probe height (m, agl)	10.0	10.0	10.0	10.0	10.0		
Probe material	Not applicable						
Residence time (seconds)	Not applicable						
Changes in next 18 months?	No	No	No	No	No		
Frequency of one-point quality control check	Not applicable						
Last Performance Evaluation	11/15/18	Not applicable	Not applicable	11/15/18	11/15/18		

A.5 Folsom-Natoma St

This site has been in operation since 1996. This site replaced the former Folsom-Leidesdorff Street site. Approximately 20 miles northeast of Downtown Sacramento, Folsom-Natoma site is the maximum summertime O_3 monitoring site within Sacramento County, for days with prevailing afternoon southwesterly winds. This is a PAMS Type III site.

Table A-16 Folsom-Natoma St. Metadata

Site Name	Folsom-Natoma Street
AQS Site No.	06-067-0012
Geographic Coordinates	38.683304°N, 121.164457°W
Location	Folsom City Hall (parking lot), located 20 miles east-northeast of
	downtown Sacramento.
Address	50 Natoma Street, Folsom, CA 95630
County	Sacramento
Distance from roadway	206 m
Annual Average Daily Traffic	Natoma St. at Coloma St (intersection total): 14,628 (City of
(Vehicles/Day)	Folsom, 2017)
Ground Cover	Vegetated
Representative Area (MSA)	SacramentoArden-ArcadeRoseville, CA

Figure A-21 Panoramic view toward north from air monitoring station roof

Figure A-22 Panoramic view toward east from air monitoring station roof

Figure A-23 Panoramic view toward south from air monitoring station roof

Figure A-24 Panoramic view toward west from air monitoring station roof

Temporary Monito

Figure A-25 Google Earth satellite image of Folsom-Natoma St.

Source: Google Earth, imagery date: 10/31/18

The circle over Folsom-Natoma in Figure A-25 indicates no trees exist within a 10 m radius, which satisfy the siting criterion that requires drip lines of trees to be at least 10 m away from probes and inlets (40 CFR Part 58, Appendix E). Also, height of the tree and building were calculated onsite with trigonometry on 6/16/19. Analyses in Tables A-17 thru A-19 show the objects identified above do not restrict air flow to the roof top inlets and samplers. Therefore, each inlet and sampler has 360° of unrestricted airflow.

Table A-17 Distance between Object and Inlet or Probe at Folsom-Natoma St.
All units in meter

	Gaseous			PM2.5	PM2.5
	Probe	NO _Y Probe	VOC	(Primary)	(Collocation)
Object A (TV	7.32	5.49	5.00	7.00	6.00
Tower)					
Object B	10.0	10.97	10.97	12.00	11.00
(Building)					
Object C	14.0	12.00	15.54	16.00	16.00
(Building)					
Object D	6.40	5.49	6.40	9.14	10.06
(Building)					
Object E	12.80	14.63	12.80	11.89	10.97
(Building)					
Object F	7.32	9.14	7.32	7.32	5.49
(Building)					
Object G (Tree)	16.46	18.29	16.46	16.00	15.00

Table A-18 Object Protrusion above Inlet or Probe at Folsom-Natoma St.

All units in meter

	Gaseous			PM2.5	PM2.5
	Probe	NO _Y Probe	VOC	(Primary)	(Collocation)
Object A (TV	19.75	19.75	19.8	19.50	19.50
Tower)					
Object B	-3.05	-3.05	-3.1	-3.30	-3.30
(Building)					
Object C	-3.05	-3.05	-3.1	-3.30	-3.30
(Building)					
Object D	-3.05	-3.05	-3.1	-3.30	-3.30
(Building)					
Object E	-2.95	-2.95	-2.95	-3.20	-3.20
(Building)					
Object F	-2.45	-2.45	-2.45	-2.70	-2.70
(Building)					
Object G (Tree)	4.7	4.7	4.7	4.5	4.5

Note: negative value indicates inlet or probe is taller than the object; thus, airflow is not obstructed no matter the distance

Table A-19 Distance vs. Protrusion Ratio at Folsom-Natoma St. (must be ≥ 2)¹²

		(illust be a	- <i>- ,</i>		
	Gaseous			PM2.5	PM2.5
	Probe	NO _Y Probe	VOC	(Primary)	(Collocation)
Object A (TV	0.4 ^(A)	0.3 ^(A)	0.3 ^(A)	$0.4^{(A)}$	0.3 ^(A)
Tower)					
Object B	N/A	N/A	N/A	N/A	N/A
(Building)					
Object C	N/A	N/A	N/A	N/A	N/A
(Building)					
Object D	N/A	N/A	N/A	N/A	N/A
(Building)					
Object E	N/A	N/A	N/A	N/A	N/A
(Building)					
Object F	N/A	N/A	N/A	N/A	N/A
(Building)					

¹² Per Appendix E to 40 CFR 58, "the distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path."

Page | 56

Object G (Tree)	3.5	3.9	3.5	3.6	3.3

(A) Object A is a broadcast tower with open frame structure. Even though it does not meet the ratio require, it does not block air flow to any probe or inlet Note: N/A indicates inlet or probe is taller than the object and airflow is not obstructed; refer to the note in the previous table

Site			Folsom-Natoma St.		
Start Date	7/1/1996	7/1/1996	7/1/2011	7/1/1996	7/1/1996
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Analytical Lab	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	AAC
Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Pollutant	O3	NO2	NOY	Total NMHC	Speciated VOC
Parameter Code	44201	42602	42600	43102	43102
Parameter Occurrence Code	1	1	1	1	2
Manufacturer and model	TAPI 400E	TAPI200UP	TEI 42I-Y	TEI 55C	Xontech 910A/912
Sampling Method	Instrumental	Instrumental	Instrumental	Instrumental	6L Pressurized Canister
Method Code	087	200	674	164	123
Analysis Method	Ultraviolet Absorption	Photolytic- Chemiluminescenc e	Chemiluminescenc e	Flame Ionization Detector	Dual Flame Ionization Detector
FRM/FEM/ARM/Other	FEM	FEM	Other	Other	Other
Monitoring objective	NAAQS comparison, public info	NAAQS comparison, public info	Public info, research	Public info, research	Research
Statement of Purpose	Measure highest summer O3 level downwind of urban area	Measures concentration downwind of urban area	Measures representative concentration	Measures concentration downwind of urban area	Measures concentration downwind of urban area
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Affiliation	PAMS (Type III)	PAMS (Type III)	PAMS (Type III)	PAMS (Type III)	PAMS (Type III)
Site type	Max O3 Concentration, Population Exposure	Highest concentration	Population Exposure	Highest concentration	Highest concentration
Spatial scale	Neighborhood	Neighborhood	Not applicable	Not applicable	Not applicable
Sampling Frequency	Continuous	Continuous	Continuous	Continuous	1 in 3 days
Sampling season	Year Round	Year Round	Year Round	Year Round	July thru Sep
Distance from supporting structure or rooftop (m)	1.9	1.9	Not applicable	1.9	1.9
Distance from flow obstructions on roof (m)	No obstruction	No obstruction	No obstruction	No obstruction	No obstruction
Distance from flow obstructions not on roof (m)	No obstruction	No obstruction	No obstruction	No obstruction	No obstruction
Distance from nearest tree drip line (m)	15.5	15.5	14.6	15.5	15.5
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue	No furnace/flue
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
Distance with nearest PM monitor (m)	2.2 (lo vol)	2.2 (lo vol)	2.2 (lo vol)	2.2 (lo vol)	2.2 (lo vol)
Unrestricted airflow (deg)	360	360	360	360	360
Probe height (m, agl)	5.5	5.5	10.0	5.5	5.5
Probe material	FEP Teflon	FEP Teflon	FEP Teflon	FEP Teflon	Stainless Steel
Residence time (seconds)	13.9	12.7	9.0	13.7	3.0
Changes in next 18 months?	No	No	No	No	No
Frequency of one-point quality control check	Every other day	Every other day	Every other day	Every other day	Pre- and post- seasonally check
Last Performance Evaluation (A) U.S. EPA Region 9 approve	1/30/18, 11/2/18	1/30/18, 2/22/18, 11/2/18	Not applicable	Temporary shutdown ^(A)	Not applicable

⁽A) U.S. EPA Region 9 approved the temporary shut down on 12/1/17

Site	Folsom-Natoma St.				
Start Date	4/1/2013	7/1/2015			
Collecting Agency	Sac Metro Air District	Sac Metro Air District			
Analytical Lab	Sac Metro Air District	Sac Metro Air District			
Reporting Agency	Sac Metro Air District	Sac Metro Air District			
Pollutant	PM2.5 (Primary monitor)	PM2.5 (Audit monitor)			
Parameter Code	88101	88101			
Parameter Occurrence Code	3	4			
Manufacturer and model	Met One 1020 BAM	Met One 1020 BAM			
Sampling Method	Very sharp cut cyclone	Very sharp cut cyclone			
Method Code	170	170			
Analysis Method	Beta Attenuation	Beta Attenuation			
FRM/FEM/ARM/Other	FEM	FEM			
Monitoring objective	NAAQS comparison, public info, research	NAAQS comparison, public info, research			
Statement of Purpose	Measures representative concentration	Collocated for QA purpose and provides substitute data if necessary			
Monitor type	SLAMS	SLAMS			
Affiliation	None	None			
Site type	Population Exposure	Population Exposure			
Spatial scale	Neighborhood	Neighborhood			
Sampling Frequency	Continuous	Continuous			
Sampling season	Year Round	Year Round			
Distance from supporting structure or rooftop (m)	2.1	2.1			
Distance from flow obstructions on roof (m)	No obstruction	No obstruction			
Distance from flow obstructions not on roof (m)	No obstruction	No obstruction			
Distance from nearest tree drip line (m)	13.0	12.0			
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue			
Distance between collocated PM monitors (m)	2.0	2.0			
Distance with nearest PM monitor (m)	2.0 m (lo vol)	2.0 m (lo vol)			
Unrestricted airflow (deg)	360	360			
Probe height (m, agl)	5.7	5.7			
Probe material	Aluminum	Aluminum			
Residence time (seconds)	Not applicable	Not applicable			
Changes in next 18 months?	No	No			
Frequency of flow rate verification	Bi-monthly	Bi-monthly			
Last Performance Evaluation	1/30/18, 7/30/18, 11/2/18	1/30/18, 7/30/18, 11/2/18			

Site	Folsom-Natoma St.				
Start Date	7/1/1996	7/1/1996	7/1/1996	7/1/1996	7/1/1996
Collecting Agency	Sac Metro Air District				
Analytical Lab	Sac Metro Air District				
Reporting Agency	Sac Metro Air District				
Pollutant	Outdoor Temperature	Relative Humidity	Solar Radiation	Wind Direction	Wind Speed
Parameter Code	62101	62201	63301	61104	61103
Parameter Occurrence Code	1	1	1	1	1
Manufacturer and model	Climatronics 100093	Climatronics 101669	Climatronics 100848	Climatronics F-460	Climatronics F-460
Sampling Method	Instrumental	Instrumental	Instrumental	Instrumental	Instrumental
Method Code	042	012	011	020	020
Analysis Method	Machine Average	Hygroscopic Plastic Film	Pyranometer	Vector Summation	Vector Summation
FRM/FEM/ARM/Other	Other	Other	Other	Other	Other
Monitoring objective	Public info	Public info	Public info	Public info, research	Public info, research
Statement of Purpose	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology	Measures representative meteorology
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Affiliation	PAMS (Type III)				
Site type	Not applicable				
Spatial scale	Not applicable				
Sampling Frequency	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling season	Year Round				
Distance from supporting structure or rooftop (m)	No supporting structure				
Distance from flow obstructions on roof (m)	No obstruction				
Distance from flow obstructions not on roof (m)	No obstruction				
Distance from nearest tree drip line (m)	Not applicable				
Distance to furnace or incinerator flue (m)	No furnace/flue				
Distance between collocated PM monitors (m)	Not applicable				
Distance with nearest PM monitor (m)	Not applicable				
Unrestricted airflow (deg)	360	360	360	360	360
Probe height (m, agl)	10.0	10.0	10.0	10.0	10.0
Probe material	Not applicable				
Residence time (seconds)	Not applicable				
Changes in next 18 months?	No	No	No	No	No
Frequency of one-point quality control check	N/A	N/A	N/A	N/A	N/A
Last Performance Evaluation	1/30/18, 11/2/18	Not applicable	Not applicable	1/30/18, 11/2/18	1/30/18, 11/2/18

A.7 North Highlands-Blackfoot

North Highlands-Blackfoot has been in operation since 1979. The objective of the original site was to collect data in support of a proposed power plant project at McClellan Air Force Base, which was located 3 miles southwest of the site. The proposed power plant project was canceled in the early 1980's; and the air force base was closed in 2001. This entire site was designated as SPM upon its establishment. During an annual review of network design in the mid-1990s, Sac Metro Air District needed additional SLAMS (which was known as National Air Monitoring Stations) sites for SO₂ and PM₁₀ to meet minimum monitoring requirements. Thus, the designation of those monitors were changed to SLAMS. The SO₂ monitor was terminated in late 2010.

Table A-20 North Highlands-Blackfoot Metadata

Site Name	North Highlands-Blackfoot
AQS Site No.	06-067-0002
Geographic Coordinates	38.71209°N, 121.38109°W
Location	Residential area located 11 miles north-northeast of downtown
	Sacramento.
Address	7823 Blackfoot Way, Antelope, CA 95843
County	Sacramento
Distance from roadway	100 m
Annual Average Daily Traffic	Navaho Dr. east of Aztec Way: <100 (estimated, two-lanes
(Vehicles/Day)	suburban circular local residential road)
Ground Cover	Paved (to north), vegetated (to south)
Representative Area (MSA)	SacramentoArden-ArcadeRoseville, CA

Figure A-26 Panoramic view toward north from air monitoring station roof

Figure A-27 Panoramic view toward east from air monitoring station roof

Figure A-28 Panoramic view toward south from air monitoring station roof

Figure A-29 Panoramic view toward west from air monitoring station roof

Figure A-30 Google Earth satellite image of North Highlands-Blackfoot Way

Source: Google Earth, imagery date: 10/31/18

The circle in Figure A-34 indicates no trees exist within a 10 m radius, which satisfy the siting criterion that requires drip lines of trees to be at least 10 m away from probes and inlets (40 CFR Part 58, Appendix E). Each of the markers identifies the tallest tree in its local cluster of vegetation. Also, height of the tree was calculated on-site with trigonometry on 6/16/19. Analyses in Tables A-21 thru A-23 show objects identified above do not restrict air flow to the roof top inlets and samplers.

Table A-21 Distance between Object and Inlet or Probe at North Highlands-Blackfoot Way
All units in meter

	Gaseous Probe	PM ₁₀ Inlet
Object A (Tree)	55.78	54.86
Object B (Tree)	40.23	39.32
Object C (Tree)	22.86	22.86
Object D (Tree)	21.03	21.03
Object E (Tree)	49.38	50.29
Object F (Tree)	44.81	45.72

Table A-22 Object Protrusion above Inlet or Probe at North Highlands-Blackfoot Way
All units in meter

7 00					
	Gaseous				
	Probe	PM ₁₀ Inlet			
Object A (Tree)	12.97	12.57			
Object B (Tree)	8.31	7.91			
Object C (Tree)	1.53	1.13			
Object D (Tree)	6.18	5.78			
Object E (Tree)	9.92	9.52			
Object F (Tree)	7.35	6.92			

Table A-23 Distance vs. Protrusion Ratio at North Highlands (must be ≥ 2)¹³

(
	Gaseous				
	Probe	PM ₁₀ Inlet			
Object A (Tree)	4.3	4.4			
Object B (Tree)	4.8	5.0			
Object C (Tree)	14.9	20.2			
Object D (Tree)	3.4	3.6			
Object E (Tree)	5.0	5.3			
Object F (Tree)	6.1	6.6			

Page | 64

¹³ Per Appendix E to 40 CFR 58, "the distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path."

Site	No	rth Highlands-Blackfoot W	/av
Start Date	12/1/1979	12/1/1979	12/1/1979
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Analytical Lab	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Pollutant	O3	CO	NO2
Parameter Code	44201	42101	42602
Parameter Occurrence Code	1	1	1
Manufacturer and model	TAPI 400E	TEI 48C	TEI 42I
Sampling Method	Instrumental	Instrumental	Instrumental
Method Code	087	054	200
Analysis Method	Ultraviolet Absorption	Nondispersive Infrared	Photolytic- Chemiluminescence
FRM/FEM/ARM/Other	FEM	FRM	FRM
Monitoring objective	NAAQS comparison, research	NAAQS comparison, research	NAAQS comparison, research
Statement of Purpose	Measures representative concentrations	Measures representative concentrations	Measures representative concentrations
Monitor type	SPM	SPM	SPM
Affiliation	None	None	None
Site type	Population Exposure	Population Exposure	Population Exposure
Spatial scale	Urban	Neighborhood	Neighborhood
Sampling Frequency	Continuous	Continuous	Continuous
Sampling season	Year Round	Year Round	Year Round
Distance from supporting structure or rooftop (m)	1.6	1.6	1.6
Distance from flow obstructions on roof (m)	No obstruction	No obstruction	No obstruction
Distance from flow obstructions not on roof (m)	No obstruction	No obstruction	No obstruction
Distance from nearest tree drip line (m)	12.8	12.8	12.8
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable
Distance with nearest PM monitor (m)	1.1 (hi vol)	1.1 (hi vol)	1.1 (hi vol)
Unrestricted airflow (deg)	360	360	360
Probe height (m, agl)	5.0	5.0	5.0
Probe material	FEP Teflon	FEP Teflon	FEP Teflon
Residence time (seconds)	14.1	13.1	16.4
Changes in next 18 months?	Yes	Yes	Yes
Frequency of one-point quality control check	Every Other Day	Every Other Day	Every Other Day
Last Performance Evaluation	5/24/18	5/24/18	4/28/2016 ^(A)
(A) Analyzer malfunction sind	20 1/10/17		

(A) Analyzer malfunction since 1/10/17

Site	North Highlands-Blackfoot Way
Start Date	1/1/1989
Collecting Agency	Sac Metro Air District
Analytical Lab	Sac Metro Air District
Reporting Agency	Sac Metro Air District
Pollutant	PM10
Parameter Code	81102
Parameter Occurrence Code	1
Manufacturer and model	Sierra Anderson 1200
Sampling Method	Hi Volume
Method Code	063
Analysis Method	Gravimetric
FRM/FEM/ARM/Other	FRM
Monitoring objective	NAAQS comparison, public info
Statement of Purpose	Measures representative concentrations
Monitor type	SLAMS
Affiliation	None
Site type	Population Exposure
Spatial scale	Neighborhood
Sampling Frequency	1 in 6 days
Sampling season	Year Round
Distance from supporting structure or rooftop (m)	2.0
Distance from flow obstructions on roof (m)	No obstruction
Distance from flow obstructions not on roof (m)	No obstruction
Distance from nearest tree drip line (m)	12.8
Distance to furnace or incinerator flue (m)	No furnace/flue
Distance between collocated PM monitors (m)	Not collocated
Distance with nearest PM monitor (m)	Not applicable
Unrestricted airflow (deg)	360
Probe height (m, agl)	5.4
Probe material	Not applicable
Residence time (seconds)	Not applicable
Changes in next 18 months?	Yes
Frequency of flow rate verification	Monthly
Last Performance Evaluation	5/24/818, 11/5/18

A.8 Sloughhouse

Located in a rural area 16.5 miles southeast of Downtown Sacramento, Sloughhouse was established in 1997 as a seasonal (April-October) O_3 special purpose monitoring site to measure elevated afternoon O_3 concentrations, under northwesterly winds, in support of Sac Metro Air District's summer Spare the Air (O_3 episodic control measure) program. It was sited to cover "data gaps" in the O_3 monitoring network, which is used for forecasting summer AQI levels.

A tree 10 m southeast of the O₃ inlet was removed in May 2011 in order to comply with 40 CFR Part 58, Appendix E (Probe and Monitoring Path Siting Criteria). After the tree removal, the O₃ monitor was re-classified from SPM to SLAMS and began continuous monitoring year round.

From November 2008 through February 2013, seasonal (November–February) PM_{2.5} data was collected with a special purpose monitor (Met One Instruments e-BAM). In November 2013, a non-FEM PM_{2.5} sampler was relocated to this location to improve data quality. Sampling season was also increased to year-round. The monitor non-FEM sampler met quality assurance criteria and siting criteria in 40 CFR Part 58, Appendices A and E. In June 2017, a FEM PM_{2.5} sampler replaced the non-FEM sampler. Subsequently, the parameter code associated with the PM_{2.5} sampler was changed from 88501 (PM_{2.5} raw data) to 88101 (PM_{2.5} at local condition).

Table A-24 Sloughhouse Metadata

Site Name	Sloughhouse
AQS Site No.	06-067-5003
Geographic Coordinates	38.494475°N, W121.211131°
Location	Fire Station in rural area located 16.5 miles east-southeast of downtown Sacramento.
Address	7250 Sloughhouse Road, Sloughhouse, CA 95683
County	Sacramento
Distance from roadway	27 m
Annual Average Daily Traffic (Vehicles/Day)	Sloughhouse Rd south of Jackson Rd: 1,000 (Estimated)
Ground Cover	Vegetated
Representative Area (MSA)	SacramentoArden-ArcadeRoseville, CA

Figure A-31 Panoramic view toward north from air monitoring station roof

Figure A-32 Panoramic view toward east from air monitoring station roof

Figure A-33 Panoramic view toward south from air monitoring station roof

Figure A-34 Panoramic view toward west from air monitoring station roof

Figure A-35 Google Earth satellite image of Sloughhouse

The circle in Figure A-40 indicates no trees exist within a 10 m radius, which satisfy the siting criterion that requires drip lines of trees to be at least 10 m away from probes and inlets (40 CFR Part 58, Appendix E). Also, height of the tree and building was calculated on-site with trigonometry on 6/16/19. Analyses in Tables A-25 thru A-27 show the objects identified above do not restrict air flow to the roof top inlets and samplers. Therefore, each inlet and sampler has 360° of unrestricted airflow.

Table A-25 Distance between Object and Inlet or Probe at Sloughhouse All units in meter

	Gaseous Probe	PM _{2.5} Inlet
Object A (Tree)	53.9	54.9
Object B (Tree)	20.1	21.0
Object C (Building)	15.5	15.5
Object D (Tree)	21.0	22.9

Table A-26 Object Protrusion above Inlet or Probe at Sloughhouse
All units in meter

All u		
	Gaseous Probe	PM _{2.5} Inlet
	1 1000	1 1012.5 111161
Object A (Tree)	11.01	10.81
Object B (Tree)	7.1	6.9
Object C (Building)	-3.46	-3.94
Object D (Tree)	1.7	1.5

Note: negative value indicates inlet or probe is taller than the object; thus, airflow is not obstructed no matter the distance

Table A-27 Distance vs. Protrusion Ratio at Sloughhouse (must be ≥ 2)¹⁴

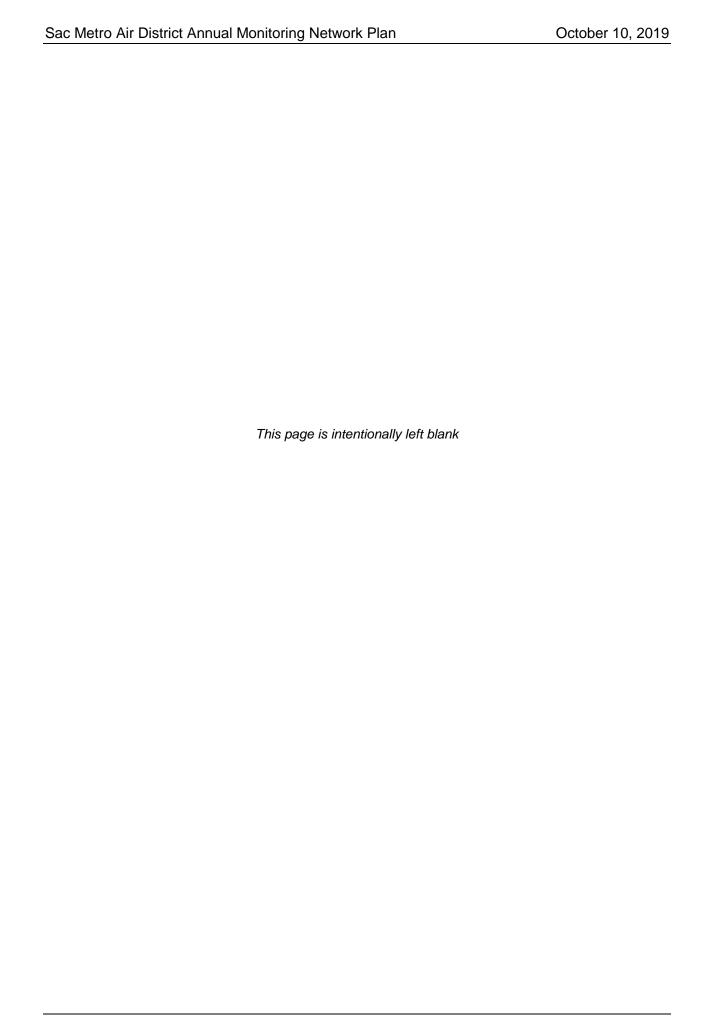
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	30 50 = <i>2</i>)	
	Gaseous Probe	PM _{2.5} Inlet
Object A (Tree)	4.9	5.1
Object B (Tree)	2.8	3.0
Object C (Building)	N/A	N/A
Object D (Tree)	12.4	15.2

Note: N/A indicates inlet or probe is taller than the object and airflow is not obstructed; refer to the note in the previous table

Page | 70

¹⁴ Per Appendix E to 40 CFR 58, "the distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path."

Site	Slo	ughhouse-Sloughhouse F	₹d.
Start Date	7/1/1997	7/1/1997	7/1/1997
Collecting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Analytical Lab	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Reporting Agency	Sac Metro Air District	Sac Metro Air District	Sac Metro Air District
Pollutant	O3	Wind Direction	Wind Speed
Parameter Code	44201	61104	61103
Parameter Occurrence Code	1	1	1
Manufacturer and model	TAPI 400E	Climatronics F-460	Climatronics F-460
Sampling Method	Instrumental	Instrumental	Instrumental
Method Code	087	020	020
Analysis Method	Ultraviolet Absorption	Vector Summation	Vector Summation
FRM/FEM/ARM/Other	FEM	Other	Other
Monitoring objective	NAAQS comparison, public info	Public info	Public info
Statement of Purpose	Measures elevated O3 concentration under northwesterly wind	Measures representative meteorology	Measures representative meteorology
Monitor type	SLAMS	Other	Other
Affiliation	None	None	None
Site type	Max O3 concentration	Not applicable	Not applicable
Spatial scale	Neighborhood	Not applicable	Not applicable
Sampling Frequency	Continuous	Continuous	Continuous
Sampling season	Year Round	Year Round	Year Round
Distance from supporting structure or rooftop (m)	1.7	2.8	2.8
Distance from flow obstructions on roof (m)	No obstructions	No obstructions	No obstructions
Distance from flow obstructions not on roof (m)	No obstructions	No obstructions	No obstructions
Distance from nearest tree drip line (m)	18.3	18.0	18.0
Distance to furnace or incinerator flue (m)	No furnace/flue	No furnace/flue	No furnace/flue
Distance between collocated PM monitors (m)	Not applicable	Not applicable	Not applicable
Distance with nearest PM monitor (m)	1.5 m (lo vol)	Not applicable	Not applicable
Unrestricted airflow (deg)	360	360	360
Probe height (m, agl)	5.0	6.1	6.1
Probe material	FEP Teflon	Not applicable	Not applicable
Residence time (seconds)	3.9	Not applicable	Not applicable
Changes in next 18 months?	No	No	No
Frequency of one-point quality control check	Every other day	N/A	N/A
Last Performance Evaluation	5/21/18	5/21/18	5/21/18
_ast i silomianos Evaluation	5,21,10	5,21/10	5/21/10


Site	Sloughhouse-Sloughhouse Rd.
Start Date	5/1/2017
Collecting Agency	Sac Metro Air District
Analytical Lab	N/A
Reporting Agency	CARB
Pollutant	PM2.5
Parameter Code	88101
Parameter Occurrence Code	3
Manufacturer and model	Met One 1020 BAM
Sampling Method	Very sharp cut cyclone
Method Code	170
Analysis Method	Beta Attenuation
FRM/FEM/ARM/Other	FEM
Monitoring objective	NAAQS comparison, public info, research
Statement of Purpose	Measures rural, background PM2.5 concentration
Monitor type	Other
Affiliation	None
Site type	Upwind/Background
Spatial scale	Urban
Sampling Frequency	Continuous
Sampling season	Year Round
Distance from supporting structure or rooftop (m)	2.3
Distance from flow obstructions on roof (m)	No obstructions
Distance from flow obstructions not on roof (m)	No obstructions
Distance from nearest tree drip line (m)	19.0
Distance to furnace or incinerator flue (m)	No furnace/flue
Distance between collocated PM monitors (m)	Not collocated
Distance with nearest PM monitor (m)	Not applicable
Unrestricted airflow (deg)	360
Probe height (m, agl)	5.2
Probe material	Not applicable
Residence time (seconds)	Not applicable
Changes in next 18 months?	Yes
Frequency of flow rate verification	Bi-monthly
Last Performance Evaluation	5/21/18, 11/7/18
	nstalled on 5/1/17, which led to the changes with

^(A) A new Met One 1020 was installed on 5/1/17, which led to the changes with parameter code, method code, etc.

A.9 Sacramento-1309 T Street

The Sacramento-1309 T Street site is operated by the California Air Resources Board/Monitoring and Laboratory Division/Special Purpose Monitoring Section. This site was established in 1989. Details of this air monitoring site can be found in CARB's annual network plan¹⁵.

¹⁵ https://ww3.arb.ca.gov/aqd/amnr/amnr.htm

Appendix B Minimum Monitoring Requirement Assessment

Table B-1 Number of SLAMS Monitoring Site within Sacramento MSA

Polluta	int	Required Monitors in Sacramento MSA	California Air Resources Board (CARB)	El Dorado County AQMD	Placer County APCD	Sacramento Metropolitan AQMD	Yolo-Solano AQMD	Total Monitors in Sacramento MSA
O ₃		2	6	0	4	5	1	16
CO		2	0	0	0	2	0	2
NO ₂	Area Wide	1	3	0	0	3	0	6
	Near-Road	1	0	0	0	1	0	1
SO ₂		1	0	0	0	1	0	1
Pb	NCore	1	0	0	0	1	0	1
	Source Oriented	0	0	0	0	0	0	0
PM ₁₀		2-416	3	0	0	3	2	8
PM _{2.5}	FEM/FRM	3	2	0	1	3	1	7
	Continuous	2	2	0	2	2	0	6
PM ₁₀₋₂ .	5	1	0	0	0	1	0	1

Source: U.S. EPA Air Quality System Monitor Description Report (AMP 390), accessed on 1 Jul 2019

Page | 75

¹⁶ Wildfire smoke in 2017 and 2018 impacted multiple air monitoring stations. While the District is addressing some impacts under the Exceptional Event Rule (81 FR 68216), other smoke impacts are short of the rule threshold and could not be addressed. Without any smoke impacts, historical data from 2009 through 2018 shows the maximum PM10 ambient concentration in Sacramento MSA is 70% of the NAAQS. Therefore, existing monitors meet the monitoring requirements in 40 CFR 58, Appendix D, as well as the needs of communities in local air districts. The District is committed to working with U.S. EPA, CARB, and other local air districts to ensure that monitoring levels continue to protect public health and safety.

Figure B-1 MOU on Shared Monitoring Responsibility with CARB, Page 1

Air Resources Board

Matthew Rodriquez Secretary for Environmental Protection Mary D. Nichols, Chairman 1001 | Street • P.O. Box 2815 Sacramento, California 95812 • www.arb.ca.gov

Edmund G. Brown Jr. Governor

August 8, 2014

Ms. Brigette Tollstrup Sacramento Metropolitan Air Quality Management District 777 12th Street, Third Floor Sacramento, California 95814-1908

Dear Ms. Tollstrup:

The purpose of this letter is to formalize an agreement between the California Air Resources Board (ARB) and the Sacramento Metropolitan Air Quality Management District (SMAQMD) to share monitoring responsibilities to meet minimum monitoring requirements for the Sacramento – Arden Arcade Metropolitan Statistical Area requirements. In response to your request, ARB will continue the operation of the 1309 T Street, Sacramento, air monitoring station (AQS# 060670010) for the purpose of meeting 40 CFR Part 58, Appendix D minimum monitoring requirements. ARB's intention is to continue operation of the State and local air monitoring stations Federal Reference Method and/or the Federal Equivalent Method for PM2.5 indefinitely. Should ARB need to revisit this agreement in the future, we will coordinate with SMAQMD prior to making changes.

If you have any questions please contact your ARB liaison, Ms. Carissa Ganapathy at (916) 322-7105 or carissa.ganapathy@arb.ca.gov of the Quality Management Section, or myself at (916) 324-7630 or kenneth.stroud@arb.ca.gov.

Sincerely.

Kenneth Stroud, Chief

Air Quality Surveillance Branch Monitoring and Laboratory Division

cc. see next page

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption. For a list of simple ways you can reduce demand and cut your energy costs, see our website: https://www.arb.ca.gov.

California Environmental Protection Agency

Printed on Recycled Paper

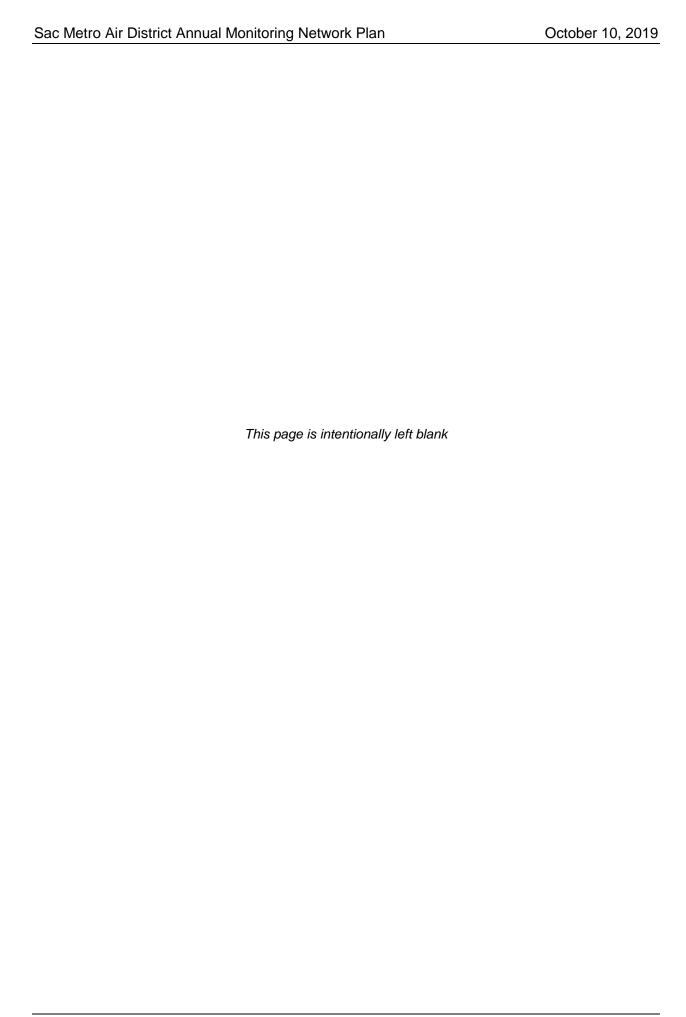
Figure B-2 MOU on Shared Monitoring Responsibility with CARB, Page 2

Ms. Brigette Tollstrup August 8, 2014 Page 2 of 2

cc. Meredith Kurpius, Ph.D. U.S. EPA Region 9 Air Quality Analysis Office, Manager 75 Hawthorne Street, AIR-7 San Francisco, California 94105

> Gwen Yoshimura U.S. EPA Region 9 Air Quality Analysis Office, Air Monitoring Team Lead 75 Hawthorne Street, AIR-7 San Francisco, California 94105

Elfego Felix U.S. EPA Region 9 Air Quality Analysis Office, District Liaison 75 Hawthorne Street, AIR-7 San Francisco, California 94105


Dr. Michael T. Benjamin, Chief Monitoring and Laboratory Division

Michael Miguel, Chief Quality Management Branch Monitoring and Laboratory Division

Gayle Sweigert, Manager Air Quality Analysis Section Air Quality Planning and Science Division

Patrick Rainey, Manager Quality Management Section Monitoring and Laboratory Division

Carissa Ganapathy Monitoring and Laboratory Division

Appendix C Copy of Annual Data Certification Letters

Figure C-1 Copy of Sac Metro Air District Data Certification Letters, Page 1

April 25, 2019

Mike Stoker Regional Administrator Region IX U.S. Environmental Protection Agency Mail Code: ORA-1 75 Hawthorne Street San Francisco, CA 94105

RE: 2018 Data Certification

Dear Mr. Stoker:

Sacramento Metropolitan Air Quality Management District (Sac Metro Air District) operates Federal Reference Method and Federal Equivalent Method monitors at its State and Local Air Monitoring Stations and Special Purpose Monitor sites. We are responsible for submitting our air quality data to the U.S. Environmental Protection Agency Air Quality System in accordance with Title 40, Code of Federal Regulation, Part 58.

This letter certifies Sac Metro Air District's 2018 data on criteria air pollutants is complete and accurate to the best of our knowledge, taking into consideration the quality assurance findings. Along with this letter, we are submitting the Certification Evaluation and Concurrence report (AMP600) and Quicklook report (AMP450NC) with focus on the SO₂ 5-minute average data.

Note that California Air Resources Board (CARB) continues to support Sac Metro Air District by submitting and certifying data for all particulate matter (PM) gravimetric filters weighted and analyzed by CARB's laboratory. Namely, these are the PM_{2.5} filters collected at Sacramento-Del Paso Manor (DPM) and Sacramento-Bercut. It also includes the PM₁₀ filters collected at DPM for determining PM_{10-2.5}.

The AMP600 report notes that certain $PM_{2.5}$ monitors did not meet collocation requirement, which falls under the responsibility of the primary quality assurance organization (PQAO). Since CARB is the PQAO for 22 local California air districts, including Sac Metro Air District, CARB will be addressing the collocation requirement in their 2018 data certification process.

777 12th Street, 3rd Floor Sacramento, CA 95814-1908 916/874-4800 916/874-4899 fax www.airquality.org

Figure C-2 Copy of Sac Metro Air District Data Certification Letters, Page 2

Stoker

April 25, 2019

Comments and justifications for certification for monitors not recommended for concurrence by the AMP600 reports' finding are listed in Table 1 (attached). If you have any questions regarding Sac Metro Air District's data or certification report, please contact Ms. Janice Lam Snyder, Program Manager of Air Monitoring, Planning & Data Analysis, at 916-874-4835 or jlam@airquality.org.

Sincerely

Mark Loutzenhiser

Division Manager, Program Coordination Division

Enclosures: Certification Evaluation and Concurrence (AMP600)

Quicklook All Parameters (AMP450NC)

cc: Gwen Yoshimura, U.S. Environmental Protection Agency Region IX (yoshimura.gwen@epa.gov)

Michael Flagg, U.S. Environmental Protection Agency Region IX (Flagg.MichaelA@epa.gov)

Fletcher Glover, U.S. Environmental Protection Agency Region IX (Clover.Fletcher@epa.gov)

Michael Benjamin, California Air Resources Board (mbenjami@arb.ca.gov)

Jin Xu, California Air Resources Board (Jin.Xu@arb.ca.gov)

Craig Anderson, California Air Resources Board (Craig.Anderson@arb.ca.gov)

Dwight Oda, California Air Resources Board (doda@arb.ca.gov)

Michael Miguel, California Air Resources Board (michael.miguel@arb.ca.gov)

Kyle Vagadori, California Air Resources Board (kyle.vagadori@arb.ca.gov)

Janice Lam Snyder, Program Coordination Division (jlam@airquality.org)

Levi Ford, PCD/Air Monitoring Section (<u>lford@airquality.org</u>)

David Yang, PCD/Planning & Data Analysis Section (dyang@airquality.org)

Page 2 of 3

Figure C-3 Copy of Sac Metro Air District Data Certification Letters, Page 3

Stoker April 25, 2019

Table 1: Comments on AMP600 & AMP450NC Review

	1	T. Comments on AMP 000 & AM	
Site	Parameter	Reason for AQS'	District Comments
	& POC	Recommendation	
North Highlands	PM ₁₀		
06-067-0002	81102-1		
Del Paso Manor	PM ₁₀		
06-067-0006	81102-1		
Del Paso Manor	PM ₁₀		
06-067-0006	81102-2		CARB is currently updating the
Branch Center	PM ₁₀	Quality Assurance Project Plan	QAPP for PM. Sac Metro Air
06-067-0284	81102-1	not approved in 10 years	District looks forward to working
Folsom	PM _{2.5}		with CARB on the update.
06-067-0012	88101-3		
Folsom	PM _{2.5}		
06-067-0012	88101-4		
Sloughhosue	PM _{2.5}		
06-067-5003	88101-3		
Del Paso Manor	Pb	Quality Assurance Project Plan	Sac Metro Air District will work
06-067-0006	85129-4	not approved in 10 years	with CARB to update the QAPP.
North Highlands	NO ₂	Annual summary completeness	
06-067-0002	42602-1	< 70%	The NO small man did not
North Highlands	NO ₂	1 nt OC completeness = CEO/	The NO ₂ analyzer did not
06-067-0002	42602-1	1-pt QC completeness < 65%	operate in 2018 due to malfunction
North Highlands	NO ₂	Annual performance valuation	manufiction
06-067-0002	42602-1	audit missing or 1 level	

Page 3 of 3

The enclosure to this letter is not reproduced in this annual network plan. Please contact Sac Metro Air District for a copy of this letter in its entirety.

Figure C-4 Copy of Sac Metro Air District Data Certification Letters, Page 4

April 25, 2019

Jin Xu Manager, Air Quality Analysis Section California Air Resources Board Air Quality Planning and Science Division P.O. Box 2815 Sacramento, CA 95812

RE: 2018 Data Certification

Dear Mr. Xu:

Sacramento Metropolitan Air Quality Management District (Sac Metro Air District) and California Air Resources Board (CARB) shares responsibility in collecting and analyzing particulate matter (PM) gravimetric filters in Sacramento County, California. It includes PM_{2.5} filters collected at Sacramento-Del Paso Manor (DPM) and Sacramento-Bercut. It also includes the PM₁₀ filters collected at DPM for determining PM_{10-2.5}.

In support of the U.S. Environmental Protection Agency (U.S. EPA) data certification requirements, Sac Metro Air District reviewed the Certification Evaluation and Concurrence report (AMP600) and Quicklook report (AMP450NC) from U.S. EPA Air Quality System. Despite findings in AMP600, the District recommend certification of the 2018 PM_{2.5} and PM_{10-2.5}. Comments to the reports' finding are listed in Table 1 (attached).

If you have any questions, please contact Ms. Janice Lam Snyder, Program Manager of Air Monitoring, Planning & Data Analysis, at 916-874-4835 or jlam@airquality.org.

Sincerely,

Ach S. 3

Mark Loutzenhiser

Division Manager, Program Coordination Division

Enclosures: Certification Evaluation and Concurrence (AMP600)

Quicklook All Parameters (AMP450NC)

777 12th Street, 3rd Floor S Sacramento, CA 95814-1908 916/874-4800 916/874-4899 fax www.airquality.org Figure C-5 Copy of Sac Metro Air District Data Certification Letters, Page 5

Xu April 25, 2019

cc: Craig Anderson, California Air Resources Board (Craig.Anderson@arb.ca.gov)

> Dwight Oda, California Air Resources Board (doda@arb.ca.qov)

Michael Miguel, California Air Resources Board (michael.miquel@arb.ca.qov)

Kyle Vagadori, California Air Resources Board (kyle.vagadori@arb.ca.gov)

Janice Lam Snyder, Program Coordination Division (ilam@airquality.org)

Levi Ford, PCD/Air Monitoring Section (Mord@airquality.org)

David Yang, PCD/Planning & Data Analysis Section (dyang@airquality.org)

Page 2 of 3

Figure C-6 Copy of Sac Metro Air District Data Certification Letters, Page 6

Xu April 25, 2019

Table 1: Comments on AMP600 & AMP450NC Review

	Site	Parameter	Reason for AQS'	District Comments
ı		& POC	Recommendation	
ı	Del Paso Manor	PM _{2.5}		
ı	06-067-0006	88101-1		CARB is currently updating the
ı	Del Paso Manor	PM _{2.5}	Quality Assurance Project Plan	QAPP for PM. Sac Metro Air
ı	06-067-0006	88101-2	not approved in 10 years	District looks forward to working
	Bercut	PM _{2.5}		with CARB on the update.
	06-067-0015	88101-1		

Page 3 of 3

The enclosure to this letter is not reproduced in this annual network plan. Please contact Sac Metro Air District for a copy of this letter in its entirety.

This page is intentionally left blank

Appendix D

California Alternative Plan (CAP III)

Figure D-1 California Alternative Plan, Page 1

Air Resources Board

Alan C. Lloyd, Ph.D. Chairman

1001 | Street • P.O. Box 2815 • Sacramento, California 95812 • www.arb.ca.gov

June 20, 2001

Mr. Emmanuel Aquitania U.S. EPA, Region IX 75 Hawthorne Street San Francisco, CA 94105-3901

Dear Mr. Aquitania:

On behalf of the air pollution control and air quality management districts operating PAMS and the ARB, I am pleased to transmit to you the Photochemical Assessment Monitoring Station California Alternative Plan (CAP III) for the 2001 monitoring season.

Of the six air districts which operate PAMS, three will maintain their existing programs for this 2001 season, which begins July 3, 2001. The others intend to modify their programs by shifting some resources from sample collection and analysis to data analysis and use. The intent is to continue to meet the data acquisition goals of the program while significantly increasing the use of the data record to improve air quality. These changes are consistent with the new directions suggested for the PAMS program at the March 2000 STAPPA/ALAPCO PAMS workshop, to reduce field operations and use resources to do data analyses.

The South Coast Air Quality Management District will continue to operate their stations under the full U. S. EPA plan. The San Diego Air Pollution Control District and the Santa Barbara Air Pollution Control District will be operating their stations as they have under CAP II (See Table 1).

The Sacramento Metropolitan Air Quality Management District, San Joaquin Valley Air Pollution Control District, and Ventura County Air Pollution Control District are making some changes to their monitoring schedules in the 2001 CAP plan. These changes are illustrated in Table 2.

Overview of Monitoring Changes

The Sacramento Metropolitan Air Quality Management District will be eliminating PAMS monitoring at the type II site at Airport Road. The justification for this change can be found in Attachment A. We support their decision to eliminate this site and to reassign the Del Paso Manor site as a type II (primary) site.

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption. For a list of simple ways you can reduce demand and cut your energy costs, see cur Website: http://www.arb.ca.gov.

California Environmental Protection Agency

Printed on Recycled Paper

Figure D-2 California Alternative Plan, Page 2

Mr. Emmanuel Aquitania June 20, 2001 Page 2

The district is also reducing speciated hydrocarbon monitoring at the type III Folsom-Natoma site (see Attachment B-information provided by the Sacramento Metropolitan district).

The San Joaquin Valley and Ventura County districts will be conducting sentinel monitoring on episode days only at their type I sites (Madera and Shafter in San Joaquin Valley, and Emma Wood in Ventura County). In addition, the Ventura County District is reducing speciated hydrocarbon monitoring at the type III Simi Valley site (see Attachments C, from the San Joaquin Valley District and D, from the Ventura County District).

There are several points in the plan that were clarified in response to U.S. EPA comments:

- Trend day definition: for all districts, a trend day is every third day during the months of July-September.
- 2) Episode day definition: The Sacramento Metropolitan and Ventura County Districts are changing the criterion for an episode day. An episode is any day that the maximum eight-hour average ozone concentration exceeds 0.0845 PPM. These Districts made these changes in an effort to better represent the levels of ozone that they are testing for in their districts. The Sacramento Metropolitan and Ventura County Districts have a goal of capturing five episodes per PAMS season. The San Joaquin Valley district is maintaining the episode criterion that was applicable under CAP II, which is any day in which the maximum one-hour average ozone concentration exceeds 0.125 PPM. The San Joaquin Valley District has a goal of capturing three episodes per PAMS season.
- 3) Canister sampling times: In response to the district modeler's requests for more episode data during the early morning hours, the Sacramento Metropolitan, San Joaquin Valley and Ventura County Districts changed the 2300-0200 PST sampling time to an 0800-1100 PST sampling time. Because three of the four sampling times match, data comparisons between trend and episode days can still be done.

Overview of "Add Backs"

Implementing the modifications to monitoring schedules will allow districts the opportunity to 'add-back' resources to other areas of the PAMS program, primarily data analysis and use. In this regard, the Sacramento Metropolitan, San Joaquin Valley, and Ventura County Districts have committed to the following short-term data analysis activities and target dates:

- Determine one-hour and eight-hour ozone trends; long-term trends, weekend ozone effect, any shifts in location of ozone peaks (December 31, 2001).
- Conduct exploratory PAMS data analysis on 1998-2000 VOC data (species fingerprint, time series, scatterplots for each PAMS site, and time of day (May 31, 2002).

Figure D-3 California Alternative Plan, Page 3

Mr. Emmanuel Aquitania June 20, 2001 Page 3

- Develop methodologies for determining VOC and NOx ratios and limitations for each site (September 30, 2002).
- 4) Evaluate early morning NMHC reactivity (San Joaquin Valley District only).

In addition, the Sacramento Metropolitan and San Joaquin Valley Districts have proposed to perform Central California Ozone Study (CCOS) data analysis work. These data analysis projects will be determined jointly by California Air Resources Board (ARB) and the districts during the spring of 2001. Data analysis will begin when CCOS releases the data for use by the study participants (September 30, 2002). In response to your comments, one other change proposed by the Sacramento Metropolitan District includes establishing NOy monitoring at two sites within the district (sites not yet determined).

We appreciate the time and effort that you and John Silvasi expended in reviewing and commenting on the CAP III proposals, and we welcome Sharon Nizich and John Lutz to the PAMS team. We have substantively addressed the informal comments regarding this plan provided by you and John. By implementing monitoring reductions and adding back resources into data analysis and new programs (e.g., NOy monitoring), these efforts will enhance the usefulness of the PAMS program. All of the districts and ARB are committed to support the new emphasis on data analysis and data use while maintaining the data acquisition goals of the program. We look forward to working with you this 2001 PAMS season. If you have any questions, please contact me at (916) 322-6202.

Sincerely,

Cliff Popejoy, Manager

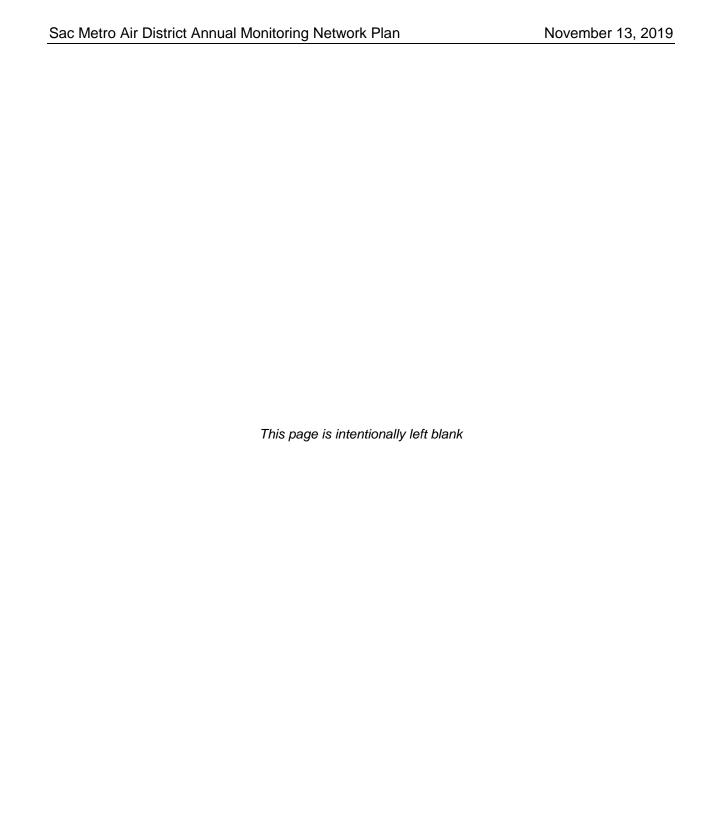
Program Evaluation and Standards Section Monitoring and Laboratory Division

Attachments

CC:

John Ching, SMAQMD
Corie Choa, SCAQMD
Rudy Eden, SCAQMD
Tom Parsons, SCAQMD
Joel Cordes, SBAPCD
John Gallup, SJVAPCD
Rich Milhorn, SJVAPCD
Mahmood Hossain, SDAPCD
Doug Tubbs, VCAPCD
David Lutz, U. S. EPA
Sharon Nizich, U. S. EPA
Jeff Cook ARB
Donald Hammond ARB
Karen Buckley ARB

27 25


Figure D-4 California Alternative Plan, Page 4

>	Ī																													×		T	T							
2		-								Ī	Ī			T	-				×	1		Ť	T	T	T				_	1	1	Ť	T						_	9-01
da	1			-	×				×		T	×	<u> </u>						×		,	<>	<×	· ×	×	×	×		×	×	×	,	<×	×	×	7	1			essure essure s/dsh/2
3				-	×														×	1	Ť		T	T					×	×	×	<>	<×	×	×	1			×	itraViolet radiation arometific Pressure in Dility arb/mid/pe&s/dsh/2-9-01
SR		×	×	×	×			Ī	×		Ī	Ī					×	×	×	×	,	<×	×	×	×	×	×		×	×	× :	<>	<×	×	×	1	1	İ	×	UV. Ultraviolet radiation BP- Barometric Pressura R- Rain V- Visibility art/mid/pe&s/dsh/2-
표		×	×	×	×				×		×	×	×				×	×	×	×	>	<×	×	×	×	×	×		×	×;	×,	<>	×	×	×				×	50043
F		×	×	×	×		×	×	×		×	×	×	×	×		×	×	×	×	>	< ×	×	×	×	×	×		×	×	×,	<>	×	×	×	1	1	×	×	seafg
3		×	×	×	×		×		×		×	×	×	×	×		×	×	×	×	,	×	×	×	×	×	×		×	×:	×	<>	<×	×	×		,	×	×	ing ing Ison ent otal
¥5		T			×				×						×				×	Ì		T					×		-	+	Ť	1	T	-	×		\dagger			/ls, 3 ho monitor d /dlrect re, ambi flation, t
9			X-split					×			X-split	X-split					×	``	;	×	,	\ \ \							X-split	;	×		×	×				X-split		C=O- Carbonyls, 3 hour cartidges UA- Upper Air monitoring W- Wind speed /direction T- Temperature, ambient SR- Solar Radiation, total
MTGC			1														×	×	×	×	,	< ×	×	×	×	×												X-colloc.	×	03×18
NMOC		×	×				-				×						×	×	×	\	>	<×	×	×	×	×							Ì		-		, ,	×		oounds, (PDFID)
HCS		×	Xparallel	×							×	×	×	×			×	×	×	×	×	< ×	×	×	×	×			 	×	×	< >	+	×				X-colloc.	×	HCS-HC Spedies by canister GC NMOC Total Non-Methane Organic Compounds, continuous, hourly monitoring RH- Relative Humidity MTGC- Measured TNMOC, GC, canister, (PDFID)
CSGC			_					×															_	-					×			-	×	+			1		-	HCS-HC Species by canister GC NMOC Total Non-Methane Organic Cc continuous, hourly monitoring RH- Relative Humidity MTGC- Measured TNMOC, GC, canists
×ON		×	×	×			×	-		- 2	×	×	×	×			×	×	×;	<u> </u>	- ×	×	ı×	×	×	×			×;	×,	×,	<>	(×	×	-	- Transcond	,	×	×	HCS- HC Spedes by of MMOC- Total Non-Mei continuous, it continuous, RH- Relative Humidity MTGC- Measured TNN
03		×	×	×		.*	×		,		×	×	×	×			×	×	×	×	· ×	×	×	×	×	×			×;	×	×	< >	×	×	-	1	1,	×	×	HCS- NMOC NTGC MTGC
AIRS#		061112002	061113001	061112003	061110008		06832011	060832015	none		060730003	060730006	060731006	060731008	попе		000029090	080670012	060670011	050570013	08020010	060195001	060295001	060194001	060390004	060296001	061073000		060371601	060370002	060650012	060375004	060374002	060376002	none		00000	000190008	060371103	rted tography
Station	Ventura County APCD	Simi Valley- Cochran #3	El Rio #2	Ventura- Emma Wood #1	Simi Valley- landfill	Santa Barbara APCD	Goleta #2	Split station in Goleta	Santa Barbara Airport	San Diego APCD	El Cajon #2	nd #2			Point Loma / Miramar	Sacramento M-AQMD	Sac- Del Paso Manor #2	Folsom-50 Natoma #3	Elk Grove- Bruceville #1	Sac-Airport Nd. #Z	Bakersfield, Golden #2 (ABB)	Fresno- Clovis #2	Arvin #3 / #1 (ARB)	Parlier#3	Madera #1	Shaffer #1 (ARB)	Visalia-airport	South Coast AOMD	Pico Rivera #2	AZUSB #3	Banning-Airport #2	Dougla #4 / #1	Burbank #2	Santa Clarita #2	LAX / Ontario X /	Riverside / Orange Co. New!	Sites	KB)		Newl - New station for 2000 03- Ozone NOx- Oxides of Nitrogen CSGC- Confinuous 3 hour Speciated hydrocarbon Gas Chromatography

Figure D-5 California Alternative Plan, Page 5

	(4) 3-Hr Canisters-July-Sept (Episodo Only)** (5-8AM, 8-14AM, 12-3PM AND 4-7PM (1) 3-Hr Canisters-July-Sept (Episodo Only)** (1) 3-Hr Canisters-July-Sept (Episodo Only)** (1) 3-Hr Canisters-July-Sept (Episodo Only)** (2) 3-Hr Canisters-July-Sept (Episodo Only)*** (3) 3-Hr Canisters-July-Sept (Episodo Only)*** (4) 3-Hr Canisters-July-Sept (Episodo Only)*** (5-8AM, 8-11AM, 12-3PM AND 4-7PM (4) 3-Hr Canisters-July-Sept (Episodo Only)*** (5-8AM, 8-11AM, 12-3PM AND 4-7PM (4) 3-Hr Canisters-July-Sept (Episodo Only)*** (6) 3-Hr Canisters-July-Sept (Episodo Only)*** (7) 3-Hr Canisters-July-Sept (Episodo Only)*** (8) 3-Hr Canisters-July-Sept (Episodo Only)** (9) 3-Hr Canisters-July-Sept (Episodo Only)** (1) 3-Hr Canisters-July-Sept (Episodo Only)** (2) 3-Hr Canisters-July-Sept (Episodo Only)** (3) 3-Hr Canisters-July-Sept (Episodo Only)** (4) 3-Hr Canisters-July-Sept (Episodo Only)** (5) 3-Hr Canisters-July-Sept (Episodo Only)** (5) 3-Hr Canisters-July-Sept (Episodo Only)** (5) 3-Hr Canisters-July-Sept (Episodo Only)** (6) 3-Hr Canisters-July-Sept (Episodo Only)** (7) 3-Hr Canisters-July-Sept (Episodo Only)** (8) 3-Hr Canisters-July-Sept (Episodo Only)** (9) 3-Hr Canisters-July-Sept (Episodo Only)** (1) 3-Hr Canisters-July-Sept (Episodo Only)** (2) 3-Hr Canisters-July-Sept (Episodo Only)** (3) 3-Hr Canisters-July-Sept (Episodo Only)** (4) 3-Hr Canisters-July-Sept (Episodo Only)** (5) 3-Hr Canisters-July-Sept (Episodo Only)** (6) 3-Hr Canisters-July-Sept (Episodo Only)** (7) 3-Hr Canisters-July-Sept (Episodo Only)** (7) 3-Hr	CARBONYLS
(4) 3-H7 Cantesters-July-Sept (Episode Only)** SECONDARY	(4) 3-Hr Cantesters-July-Sept (Episede Only)**	
SECONDARY	SECONDARY	THOM
TREND DAYS (Every 3" day); S-3AM AND 4-7PM AND	TREND DAYS (Every 3'd asy); TREN	NON
	I	(4) 3-Hr Cartridges every three days-July-Sept
TREET	TREET	TREND DAYS (Every 3th day): 11PM-2AM, 5-4AM, 12-2PM AND 4-7PM ISODE DAYS*** REAM 3-11AM 10-20M AND 4-7DM
### SAMA AND 4-7PM ### SAMA STREET ### SAMA STAM	### EPISODE DAYS**; 6-8AM, 8-11AM A12-3PM AND 4-7PM ###################################	BLANCE BOTH CONTROL OF THE CONTROL O
### COUNTY AIR POLLETTON CONTROL DISTRICT (4) 3-11 Canisters-July-Sept (Episode Only)**** (5-8AM, 8-17AM, 12-3PM AND 4-7PM	### EPISODE DAYS**, 5-8AM, 8-11AM, 12-3PM AND 4-7PM ###################################	
### COUNTY ARE POLLUTION CONTROL BISTRICT (4) 3-Hr Canisters-July-Sept (Episode Only)**** (4) 3-Hr Canisters-July-Sept (Episode Only)**** (4) 3-Hr Canisters-July-Sept (Episode Only)*** (4) 3-Hr Canisters-July-Sept (Episode Only)**** (4) 3-Hr Canisters-July-Sept (Episode Only)**** (5) 3-Hr Canisters-July-Sept (Episode Only)**** (5) 3-Hr Canisters-July-Sept (Episode Only)*** (5) 3-Hr Canisters-July-Sept (Episode Only)*** (6) 3-Hr Canisters-July-Sept (Episode Only)*** (7) 3-Hr Canisters-July-Sept (Episode Only)*** (8) 3-Hr Canisters-July-Sept (Episode Only)*** (9) 3-Hr Canisters-July-Sept (Episode Only)*** (9) 3-Hr Canisters-July-Sept (Episode Only)*** (1) 3-Hr Canisters-July-Sept (Episode Only)*** (2) 3-Hr Canisters-July-Sept (Episode Only)*** (3) 3-Hr Canisters-July-Sept (Episode Only)** (4) 3-Hr Canisters-July-Sept (Episode Only)** (5) 3-Hr Canisters-July-Sept (Episode Only)** (5) 3-Hr Canisters-July-Sept (Episode Only)** (6) 3-Hr Canisters-July-Sept (Episode Only)** (7) 3-Hr Canisters-July-Sept (Episode Only)** (8) 3-Hr Canisters-July-Sept (Episode Only)** (9) 3-Hr Canisters-July-Sept (Episode Only)** (1) 3-Hr Canisters-July-Sept (Episode Only)** (2) 3-Hr Canisters-July-Sept (Episode Only)** (3) 3-Hr Canisters-July-Sept (Episode Only)** (4) 3-Hr Canisters-July-Sept (Episode Only)** (5) 3-Hr Canisters-July-Sept (Episode Only)** (6) 3-Hr Canisters-July-Sept (Episode Only)** (7) 3-Hr Canisters-July-Sept (Episode Only)** (8) 3-Hr Canisters-July-Sept (Episode Only)** (8) 3-Hr Canisters-July-Sept (Episode Only)** (8) 3-Hr Canisters-July-Sept (Episode Only)** (9) 3-Hr Canisters-July-Sept (Episode Only)** (1) 3-Hr Cani	### STATE	NONE
(4) 3-Ht Canisters-July-Sept (Episode Only)**** (4) 3-Ht Canisters-July-Sept (Episode Only)**** (5-8AM, 8-11AM, 12-3PM AND 4-7PM A	### (4) 3-Ht Canisters-July-Sept (Episode Only)**** (4) 3-Ht Canisters-July-Sept (Episode Only)**** (5-8AM, 8-11AM, 12-3PM AND 4-7PM AND 4-7	
(4) 3-H° Canistors-July-Sept (Episode Only)*** 5-8AM, 8-1-1AM, 1-2-2PM AND 4-7PM	(4) 3-H° Canistors-July-Sept (Episode Only)*** 5-8_AM_ 5-1AM_ 1-2-2PM AND 4-7PM	III NON
(4) 3.44 Canistors—July.Sept	TREND DAYS (Every 3" day);	NACA.
TREND DAYS (Evory 3" day):	TREND DAYS (Evory 3" day):	(4) 3-Hr Cartridges every three days-July-Sept
(4) 3-Hr Canisters-July-Sept TREND DAYS (Every 3 rd day); TPM-2AM 5-8AM 12-3PM AND 4-7PM (4) 3-Hr Canisters-July-Sept TREND DAYS (Every 3 rd day); TPM-2AM 5-8AM 12-3PM AND 4-7PM (4) 3-Hr Canisters-July-Sept TREND DAYS (Every 3 rd day); TREND DAYS (EVERY 3 rd day);	TREND DAYS (Every 3 rd day); TPM-2AM 5-8AM 12-3PW AND 4-7PM TREND DAYS (Every 3 rd day); TPM-2AM 5-8AM 12-3PW AND 4-7PM TREND DAYS (Every 3 rd day); TREND DAYS (Every 3 rd da	TREND DAYS (Every 3" day): 11PM-2AM, 5-8AM, 12-3PM AND 4-7PM ISODE DAYS***: 5-8AM, 8-11AM, 12-3PM AND 4-7PM
		(4) 3-Hr Cartridges every three days-July-Sept
(4) 3-HC canisters-July-Sept TREND DAYS (Every 3"" day): 11PM-2AM, 5-BAM, 12-3PM AND 4-7PM (4) 3-HC canisters-July-Sept TREND DAYS (Every 3" day): 11PM-2AM, 5-BAM, 8-11AM, 12-3PM AND 4-7PM (5) 3-HC canisters-July-Sept (Episede Only)** (5) 3-HC Canisters July-Sept (Episede Only)** (6) 3-HC Canisters July-Sept (Episede Only)** (7) 3-HC Canisters July-Sept (A)** (8) 3-HC Canisters July-Sept: TREND DAYS (Every 3"" day) 11PM-2AM, 5-BAM, 12-3PM and 4-7PM (7) 3-HC Canisters July-Sept: TREND DAYS (Every 3"" day): 5-BAM and 4-7PM (8) 3-HC Canisters July-Sept: TREND DAYS (Every 3"" day): 5-BAM and 4-7PM (9) 3-HC Canisters July-Sept: TREND DAYS (Every 3"" day): 5-BAM and 4-7PM (9) 3-HC Canisters July-Sept: TREND DAYS (Every 3"" day): 5-BAM and 4-7PM (9) 3-HC Canisters July-Sept: TREND DAYS (Every 3"" day): 5-BAM and 4-7PM	(4) 3-H°C danisters-July-Sopt TREND DAYS (Every 3" day): 11PM-2AM, 5-8AM, 8-11AM, 12-3PM AND 4-7PM EPISODE DAYS****, 5-8AM, 8-11AM, 12-3PM AND 4-7PM (4) 3-H°C danisters-July-Sopt (Episode Only)** (5) 3-H°C danisters-July-Sopt (Episode Only)** (5) 3-H°C danisters-July-Sopt (Episode Only)** (5) 3-H°C danisters July-Sopt (Episode Only)** (7) 3-H°C danisters July-Sopt (Episode Only)** (8) 3-H°C danisters July-Sopt (Episode Only)** (9) 3-H°C danisters July-Sopt (TREND DAYS (Every 3" day) TREND DAYS (Every 3" day) TREND DAYS (Every 3" day) TREND DAYS (Every 3" day): 5-8AM and 4-7PM EPISODE DAYS*** 5-8AM, 8-11AM, 12-3PM and 4-7PM EPISODE DAYS*** 5-8AM, 8-11AM, 12-3PM and 4-7PM TREND DAYS (Every 3" day): 5-8AM and 4-7PM TREND DAYS (Every 3" day): 3-8AM and 4-7PM	TREND DAYS (Every 3" day): 11PM-2AM, 5-8AM, 12-3PM AND 4-7PM ISODE DAYS***; 5-8AM, 8-11AM, 12-3PM AND 4-7PM
(4) 3-Hr Canisters—July-Sept TREND DAYS (Every 3 ⁴ day): III EPISODE DAYS. 5-8AM, 12-3PM AND 4-7PM EQUINTY-AR: P.O.E.U.T. ON-CONTROL DISPERICT (4) 3-Hr Canisters—July-Sept (Episode Only)** (5) 3-Hr Canisters—July-Sept: (4) 3-Hr Canisters July-Sept: (5) 3-Hr Canisters July-Sept: (6) 3-Hr Canisters July-Sept: (7) 3-Hr Canisters July-Sept: (8) 3-Hr Canisters July-Sept: TREND DAYS (Every 3 ⁴ day): (9) 3-Hr Canisters July-Sept: TREND DAYS (Every 3 ⁴ day): (1) EPISODE DAYS. 5-5AM, 12-3PM and 4-7PM TREND DAYS (Every 3 ⁴ day): 5-5AM and 4-7PM TREND DAYS (Every 3 ⁴ day): 5-5AM and 4-7PM TREND DAYS (Every 3 ⁴ day): 5-5AM and 4-7PM TREND DAYS (Every 3 ⁴ day): 5-5AM and 4-7PM TREND DAYS (Every 3 ⁴ day): 5-5AM and 4-7PM	(4) 3-Hr Canistors-July-Sept TREND DAYS (Levery 3" day): III EPISODE DAYS***, 5-8AM, 12-3PM AND 4-7PM (4) 3-Hr Canistors-July-Sept (Episode Only)** (5) 3-Hr Canistors-July-Sept (Episode Only)** (5) 3-Hr Canistors-July-Sept (Episode Only)** (5) 3-Hr Canistors July-Sept: TREND DAYS (Every 3" day) 11PM-ZAM, 5-8AM, 12-3PM and 4-7PM (2) 3-Hr Canistors July-Sept: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (4) 3-Hr Canistors July-Sept: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (4) 3-Hr Canistors July-Sept: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (4) 3-Hr Canistors July-Sept: TREND DAYS (A) 3-Hr Canistors July-Sept:	NOON.
COUNTY AIR POLEUTION CONTROL DISTRICT (4) 3-Hr Canisters-July-Sopt (Episode Only)** (5) 3-Hr Canisters July-Sopt (4) 3-Hr Canisters July-Sopt (4) 3-Hr Canisters July-Sopt TREND DAYS (Every 3" day) ITREND DAYS (Every 3" day) ITREND DAYS (Every 3" day) TREND DAYS (Every 3" day) (2) 3-Hr Canisters July-Sopt TREND DAYS (Every 3" day): 5-8AM and 4-7PM TREND DAYS (Every 3" day): 5-8AM and 4-7PM (3) 3-Hr Canisters July-Sopt TREND DAYS (Every 3" day): 5-8AM and 4-7PM	(4) 3-Hr Canisters-July-Sopt (Episode Only)** (4) 3-Hr Canisters-July-Sopt (Episode Only)** (5) 3-Hr Canisters-July-Sopt (Episode Only)** (4) 3-Hr Canisters-July-Sopt: TREND DAYS (Every 3" day) 11PM-2AM, E-AM, 12-3PM and 4-7PM 11PM-2AM, E-BAM, B-11AM, 12-3PM and 4-7PM (2) 3-Hr Canisters July-Sopt: TREND DAYS (Every 3" day) (3) 3-Hr Canisters July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (3) 3-Hr Canisters July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (4) 3-Hr Canisters July-Sopt:	i NOW
(4) 3-Hr Canistors—July-Sept (Episode Only)** 5-9AM, 12-3PM AND 4-7PM 5-9AM, 12-3PM AND 4-7PM (4) 3-hr Canisters July-Sept: TREND DAYS (Every 3" day) 119M-2AM, 5-6AM, 12-3PM and 4-7PM [1] EPISODE DAYS** 5-6AM, 8-11AM, 12-3PM and 4-7PM [2] 3-hr Canisters July-Sept: TREND DAYS (Every 3" day); 5-8AM and 4-7PM [3] 5-hr Canisters July-Sept: TREND DAYS (Every 3" day); 5-8AM and 4-7PM	(4) 3-Hr Canistors—July-Sopt (Episode Only)** 5-9AM, 12-3PM AND 4-7PM (4) 3-Hr Canistors July-Sopt: TREND DAYS (Every 3" day) 11PM-2AM, 5-6AM, 1-2-3PM and 4-7PM (2) 3-hr Canistors July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (3) 3-hr Canistors July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (4) 3-hr Canistors July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (5) 3-hr Canistors July-Sopt: (6) 3-hr Canistors July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM	
(4) 3-hr Canisters July-Sopt: TREND DAYS (Every 3" day) 11PM-2AM, 5-8AM, 12-3PM and 4-7PM (2) 3-hr Canisters July-Sopt: TREND DAYS** (Every 3" day); 5-8AM and 4-7PM (3) 3-hr Canisters July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (3) 3-hr Canisters (4) 3-hr Canisters	(4) 3-hr Canisters July-Sopt: TREND DAYS (Every 3" day) 119M-2AM, 5-8AM, 12-3PM and 4-7PM, 119M-2AM, 5-8AM, 8-11AM, 12-3PM and 4-7PM, (2) 3-hr Canisters July-Sopt: TREND DAYS (Every 3" day); 5-8AM and 4-7PM (3) 4-hr Canisters July-Sopt: EPISODE DAYS** 6-8AM, 8-17AM, 12-3PM and 4-7PM	II Z O Z
TREND DAYS (Every 3 rd day); 5-8AM and 4-7PM (4) Shi Canisters: (4) FPIRODE DAYSER FLADA 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	(2) 3-hr Canisters July-Sept: TREND DAYS (Every 3" day): 5-8AM and 4-7PM EPISODE DAYS*** 5-8AM, 8-17AM, 12-3PM and 4-7PM	(4) 3-hr Cartridges July-Sept: DAYS (Every 3rd day) 2-54M, 5-84M, 12-3FM and 4-7PM 1ISODE DAYS** - S-8AM, 8-114M, 12-3FM and 4-7PM
FDISODE DAVS** GRAM 92-20M and 4.70M		
		NONE

The enclosure to this letter is not reproduced in this annual network plan. Please contact Sac Metro Air District for a copy of this letter in its entirety.

Appendix E Letters to U.S. EPA

Figure E-1 Notice of Temporary Shut Down for Sacramento-Folsom Ambient Air Monitoring Site, Page 1

Alberto Ayala, Ph.D., M.S.E. AIR POLLUTION CONTROL OFFICER

July 3, 2019
Ms. Gwen Yoshimura
U.S. Environmental Protection Agency
Air Quality Analysis Office (AIR-7)
75 Hawthorne Street
San Francisco, CA 94105-3901

Subject: Notice of Temporary Shutdown for the Sacramento-Folsom (AQS ID: 06-067-0012) Ambient Air Monitoring Site

Dear Ms. Yoshimura:

The Sacramento Metropolitan Air Quality Management District (District) is submitting a temporary shutdown notice to the United States Environmental Protection Agency (EPA) for the temporarily closure of Folsom Air Monitoring Station (AMS) (AQS ID: 06-067-0012) for all parameters at the site due to the shelter replacement between July, 2019 to December, 2019.

This request was first submitted to the EPA on February 12, 2018 and a conference call was conducted on March 27, 2018 with the District, EPA Region 9, and California Air Resources Board (CARB) to discuss this matter further. On April 5, 2018, an email from EPA staff¹ stated that EPA's preference would be to setup a nearby trailer to run ozone and NOx analyzers while Folsom AMS is being replaced, or delay construction until the end of the ozone season to ensure there is no gap in the regulatory record. The District elected to delay construction until the end of 2018 ozone season to ensure there are no gaps in the regulatory record.

Due to circumstances beyond the District's control, the replacement of Folsom AMS has not started and the structure continues to deteriorate. The bolts connecting the roof access ladder to the wall of the building have started to pull away from the structure. A storm during the weekend of March 2nd and 3rd, 2019 pulled guy wire bolts out of the NO_Y instrument reactor mast forcing the district to remove the mast. The structure is rapidly deteriorating and needs replacement without any further delay.

Since the District will be using data from 2016 to 2018 to determine attainment in 2019 for the 1997 ozone National Ambient Air Quality Standard (NAAQS), it is not anticipated to impact the attainment decision for the 1997 ozone NAAQS. Additionally, the Folsom monitor has not been the "peak ozone design value" site for Sacramento Federal Ozone Nonattainment Area since 2015. Over the years, the ozone peak design value site has shifted to the foothills to the Placerville and Auburn stations. The District has worked with EPA Region 9 staff, Michael Flagg, who anticipates that a temporary shut down during peak summertime O₃ monitoring season would have no foreseeable regulatory significance.

777 12th Street, 3rd Floor Sacramento, CA 95814-1908 916/874-4802 916/874-4805 fax www.airguality.org

Page | 92

¹ Flagg, Michael, "Conference call with SMAQMD and EPA", Message to Janice Lam Snyder, 5 Apr. 2018, Email.

Figure E-2 Notice of Temporary Shut Down for Sacramento-Folsom Ambient Air Monitoring Site, Page 2


During July, 2019, the District will cease operation of the station until the structure can be replaced and the instrumentation can be reinstalled. The District is working to limit the downtime of the station. It is anticipated that the new station will be operational by winter of 2019. The District will continue to work with CARB and EPA on more affirmative dates as construction dates are confirmed.

If you have any other questions, please contact me.

Sincerely,

Janice Lam Snyder

Program Manager, Air Monitoring, Planning and Data Analysis Sacramento Metropolitan Air Quality Management District

Appendix F U.S. EPA Response to Letter

Figure F-1 Response to Notice of Temporary Shut Down for Sacramento-Folsom Ambient Air Monitoring Site, Page 1

From: YOSHIMURA, GWEN <Yoshimura.Gwen@epa.gov>

Sent: Friday, July 19, 2019 2:44 PM

To: Janice Lam Snyder

Cc: Levi Ford; Flagg, MichaelA; Vallano, Dena

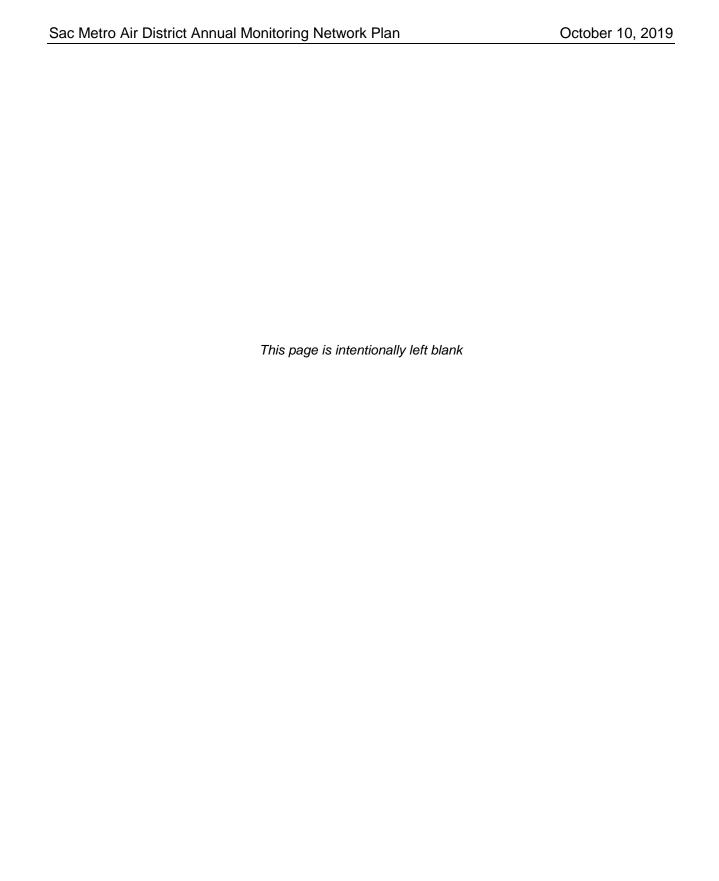
Subject: Folsom relocation / moving forward with planned shut down

*** THIS EMAIL ORIGINATED OUTSIDE AIRQUALITY.ORG ***

Hi Janice,

Our apologies for not having the official correspondence back to you regarding your temporary shutdown of Folsom. We are working on the approval and hope to get it to you shortly. In the meantime, please feel free to move forward with your shutdown as planned.

Much thanks, Gwen


Gwen M. Yoshimura Manager, Air Quality Analysis Office Environmental Protection Agency, Region 9

Phone: 415.947.4134

Email: yoshimura.gwen@epa.gov

mailing address: U.S. Environmental Protection Agency Air Quality Analysis Office (AIR-4-2) 75 Hawthorne Street San Francisco, CA 94105

Page | 95

