UNDER PUBLIC REVIEW SMAQMD BACT CLEARINGHOUSE

CATEGORY: IC ENGINE SPARK - STANDBY

BACT Size: Minor Source BACT

IC ENGINE STANDBY

BACT Determination Number: 208 BACT Determination Date:

Equipment Information

Permit Number: N/A -- Generic BACT Determination **Equipment Description:** IC ENGINE STANDBY

Unit Size/Rating/Capacity: < 500 BHP

Equipment Location:

BACT Determination Information

	•	
ROCs	Standard:	See Description
	Technology Description:	Lean burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr), Rich burn: 0.29 g/hp-hr
	Basis:	Achieved in Practice
NOx	Standard:	See Description
litox	Technology Description:	Lean burn: 1.0 g/hp-hr, Rich burn: 25 ppmvd @ 15 O2 (0.44 g/hp-hr) OR 96% weight reduction
	Basis:	Achieved in Practice
SOx	Standard:	Natural gas fuel or equivalent fuel
	Technology Description:	
	Basis:	Achieved in Practice
PM10	Standard:	Natural gas fuel or equivalent fuel
	Technology Description:	
	Basis:	Achieved in Practice
PM2.5	Standard:	Natural gas fuel or equivalent fuel
	Technology Description:	
	Basis:	Achieved in Practice
СО	Standard:	2.0 g/hp-hr
	Technology Description:	
	Basis:	Achieved in Practice
LEAD	Standard:	
	Technology Description:	
	Basis:	
		L

Comments: T-BACT is equivalent to BACT for VOC.

District Contact:

Printed: 11/13/2018

UNDER PUBLIC REVIEW SMAQMD BACT CLEARINGHOUSE

CATEGORY: <u>IC ENGINE SPARK - STANDBY</u> **BACT Size:** Minor Source BACT IC ENGINE STANDBY **BACT Determination Number:** 209 **BACT Determination Date: Equipment Information Permit Number:** N/A -- Generic BACT Determination IC ENGINE STANDBY **Equipment Description:** Unit Size/Rating/Capacity: ≥ 500 BHP **Equipment Location: BACT Determination Information** See Description Standard: **ROCs** Lean burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr), Rich burn: 0.29 g/hp-hr Technology **Description:** Achieved in Practice Basis: See Description Standard: **NOx** Lean burn: 0.5 g/hp-hr, Rich burn: 25 ppmvd @ 15 O2 (0.44 g/hp-hr) OR 96% weight reduction Technology **Description:** Achieved in Practice Basis: Natural gas fuel or equivalent fuel Standard: SOx Technology **Description:** Achieved in Practice Basis: 0.0099 lb/MMBtu Standard: **PM10** Technology **Description:** Achieved in Practice Basis: 0.0099 lb/MMBtu Standard: PM2.5 Technology Description:

Comments: T-BACT is equivalent to BACT for VOC.

Basis:

Basis: Standard:

Basis:

Standard:

Technology Description:

Technology Description:

Achieved in Practice

Achieved in Practice

1.5 g/bhp-hr

District Contact:

Printed: 11/13/2018

CO

LEAD

BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

	DETERMINATION NO.:	208 & 209
	DATE:	November 13, 2018
	ENGINEER:	Jeffrey Quok
Category/General Equip Description:	Internal Combustion (I.C.) Er	ngine
Equipment Specific Description:	I.C. Engine Spark – Standby (Excluding Biogas)	, Gaseous-fueled
	Engines < 500 BHP (BACT #	<i>‡</i> 208)
Equipment Size/Rating:	Engines ≥ 500 BHP (BACT #	<i>‡</i> 209)
Previous BACT Det. No.:	No. 122 & 123	

This BACT determination will update the following determinations:

#122 & #123 which were made on August 5, 2016 for I.C. Engine Spark - Standby, < 500 BHP and \geq 500 BHP

BACT/T-BACT ANALYSIS

A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT/T-BACT for gaseous-fueled and propane/LPG standby engines by the following agencies and air pollution control districts:

Note: Tables 3.2-1, 3.2-2, and 3.2-3 of AP-42 list benzene, formaldehyde, PAHs, naphthalene, acetaldehyde, acrolein, propylene, toluene, xylenes, ethyl benzene, and hexane as the primary drivers for health risks associated with natural gas combustion. These VHAPs/organic compounds are emitted as VOC and the same control technologies that control VOCs also control the listed VHAPs.

District/Agency	Best Available Control Technology (BACT)/Requirements				
	BACT Source: EPA RACT/BACT/LAER Clearinghouse (See Attachment A) RBLC ID: N/A IA-0102 (VOC) & CA-1225 (NOx, PM10, & CO)				
	For star BHP	ndby natural gas (includes propane & LPG) units with a rating of < 500			
	VOC	0.66 lb/hr (IA-0102) ^(A)			
	NOx	0.78 lb/hr (CA-1225) ^(B)			
	SOx	N/A – No BACT determinations found in the < 500 BHP range			
	PM10	0.216 lb/hr (CA-1225) ^(B)			
	PM2.5	N/A – No BACT determinations found in the < 500 BHP range			
	СО	4.0 g/hp-hr (CA-1225) ^(B)			
	not (B) CA-	102 was a BACT Determination for a 225 KW engine. This determination did identify if the engine was lean or rich burn. 1225 was a BACT Determination for a 256 BHP engine. This determination not identify if the engine was lean or rich burn.			
		EPA RACT/BACT/LAER Clearinghouse (See Attachment A) D: OK-0153 (VOC, NOx, & CO), IN-0167 (SOx), & MI-0401 (PM10 & PM2.5)			
US EPA	For star	ndby natural gas (includes propane & LPG) units with a rating of ≥ 500 BHP			
	VOC	0.44 g/hp-hr (OK-0153) ^(A)			
	NOx	0.5 g/hp-hr (OK-0153) ^(A)			
	SOx	0.0015 g/kwh (0.0011 g/hp-hr) (IN-0167) ^(B)			
	PM10	0.0099 lb/MMBtu (MI-0401) ^(C)			
	PM2.5	0.0099 lb/MMBtu (MI-0401) ^(C)			
	СО	0.43 g/hp-hr (OK-0153) ^(A)			
	did (B) IN-0 did (C) MI-0	0153 was a BACT Determination for a 2,889 BHP engine. This determination not identify if the engine was lean or rich burn. 0167 was a BACT Determination for a 620 BHP engine. This determination not identify if the engine was lean or rich burn. 0401 was a BACT Determination for a 1,200 kW engine. This determination not identify if the engine was lean or rich burn.			
	T-BACT There are no T-BACT standards published in the clearinghouse for this category.				
	40 CFR Ignition I new stat	Part 60 Subpart JJJJ – Standards of Performance for Stationary Spark nternal Combustion Engines: This regulation applies to owners/operators of tionary spark ignition engines that commenced construction after June 12, 0 CFR §60.4230(a)(4)]			

District/Agency	Best Available Control Technology (BACT)/Requirements							
	40 CFR §60.4233(d) & §60.4233(e) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 BHP) must comply with the emission standards of Table 1 to this subpart for their emergency stationary SI ICE (applies to both lean and rich burn engines).							
		40 CF	R Subpart JJJJ	Table 1: Emis	sion Standa	rds (g/kW-h	r)	
					Emis	sion Standa	rds ^(A)	
	Engine and	e Type Fuel	Maximum Engine Power	Manufacture Date	g/bhp-hr (ppmvd at 15% O ₂)			
US EPA					NOx	СО	VOC(C)	
	Emerge	ncy ^(D)	25 <bhp<130< td=""><td>1/1/2009</td><td>10^(B) (N/A)</td><td>387 (N/A)</td><td>N/A</td></bhp<130<>	1/1/2009	10 ^(B) (N/A)	387 (N/A)	N/A	
			BHP≥130		2.0 (160)	4.0 (540)	1.0 (86)	
	(B) The and (C) For emis	aply with the emission standards in units of either g/bhp-hr or ppmvd at 5 O2 emission standards applicable to emergency engines between 25 BHP 130 BHP are in terms of NOx + HC. purposes of this subpart, when calculating emissions of VOC compounds, ssions of formaldehyde should not be included. lies to both lean and rich burn emergency engines.						
	BACT Source: ARB BACT Clearinghouse (SCAQMD) (See Attachment B)							
	VOC	andby spark ignition natural gas fired units ^(A)						
	NOx	1.5 g/bhp-hr, 3-way catalyst converter with air/fuel ratio controller 1.5 g/bhp-hr, 3-way catalyst converter with air/fuel ratio controller						
Air Resources	SOx	N/A – No BACT determinations found						
Board (ARB)	PM10	N/A - N	N/A – No BACT determinations found					
	PM2.5	N/A – N	No BACT determ	inations found				
	СО	2.0 g/bhp-hr, 3-way catalyst converter with air/fuel ratio controller					oller	
	(A) This BACT determination was for a 1334 bhp engine. The determination doesn't specify if the engine is rich or lean burn.							

District/Agency	Best Available Control Technology (BACT)/Requirements					
Air Resources Board (ARB)	T-BACT There are no T-BACT standards published in the clearinghouse for this category.					
	None	EQUIREMENTS:				
	CARB RACT/BARCT Guidelines for Stationary Spark-Ignited Internal Cangines (11/2001) This document presents the determination of reasonably available control (RACT) and best available retrofit control technology (BARCT) for controvoc, and CO from stationary, spark-ignited reciprocating internal engines. On page IV-14 of the document, emergency standby engines a exempt from the recommended emission limits. Therefore, this guide applicable to this BACT determination.					
	BACT Source:	SMAQMD BACT Clearinghouse, BACT Determination #122 & #123 (8/5/16)				
	For standby spark ignition units with a rating of < 500 BHP					
	VOC	Lean Burn 1.0 g/bhp-hr Rich Burn				
		50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller				
	NOx	Lean-Burn: 1.0 g/bhp-hr				
SMAQMD		Rich Burn: 25 ppmvd @ 15% O ₂ OR 96% weight reduction				
	SOx	Natural gas or equivalent fuel				
	PM10	Natural gas or equivalent fuel				
	PM2.5	Natural gas or equivalent fuel				
	СО	2.0 g/bhp-hr				

District/Agency	Best Available Control Technology (BACT)/Requirements				
	For star	dby spark ignition units with a rating of ≥ 500 BHP ^(A)			
	voc	Lean Burn 0.6 g/bhp-hr Rich Burn 50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller			
	NOx	Lean-Burn: 0.5 g/bhp-hr Rich-Burn: 25 ppmvd @ 15% O ₂ OR 96% weight reduction			
	SOx	Natural gas or equivalent fuel			
	PM10	0.0099 lb/MMBtu			
	PM2.5 0.0099 lb/MMBtu				
	СО	1.5 g/p-hr			
SMAQMD	T-BACT Source: SMAQMD BACT Clearinghouse, BACT Determination #122 & #123 (8/5/16)				
	For star	dby spark ignition units with a rating of < 500 BHP ^(A)			
	VHAP ^(A)	1.0 g/bhp-hr			
	coml	Il list of the volatile hazardous air pollutants (VHAP) from natural gas bustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating nes, Tables 3.2-1, 3.2-2, and 3.2-3.			
	For star	dby spark ignition units with a rating of ≥ 500 BHP ^(A)			
	VHAP ^(A)	0.6 g/bhp-hr			
	coml	Il list of the volatile hazardous air pollutants (VHAP) from natural gas bustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating nes, Tables 3.2-1, 3.2-2, and 3.2-3.			
	Rule 412 Sources This rule BHP loca operation exempt 1	EQUIREMENTS: 2 – Stationary Internal Combustion Engines Located at Major Stationary of NOx (Adopted 6/1/1995) applies to any stationary internal combustion engine rated at more than 50 ated at a major stationary source of NOx. Section 110 of this rule states that of stationary internal combustion engines used for emergency standby are from the standards of this rule. Therefore, this rule is not applicable to this etermination.			

Best Avai	lable Control Te	chnology (B	ACT)/Requir	rements		
BACT Source: SCAQMD BACT Guidelines for Non-Major Polluting Facilities, page 74 (2/2/18)						
BACT Guideline, I.C. Engine Spark Ignition, Stationary, Emergency – g/bhp-hr						
Rating/Siz	re VOC	NOx	SOx	СО	PM	
< 130 H	P 1.5 g/bhp- hr	1.5 g/bhp- hr	Use of clean fuels (A)	2.0 g/bhp-hr	Use of clean fuels (A)	
≥ 130 H	P 1.0 g/bhp- hr	1.5 g/bhp- hr	Use of clean fuels (A)	2.0 g/bhp-hr	Use of clean fuels (A)	
 (A) Clean fuel is defined as one that produces air emissions equivalent to or lower than natural gas for NOx, SOx, ROG, and fine particulate matter (PM10). T-BACT There are no T-BACT standards published in the clearinghouse for this category. RULE REQUIREMENTS: Reg IX, Rule 1110.2 – Emissions from Gaseous- and Liquid-Fueled Engines (Amended 6/3/16) Emergency standby engines are exempt from this Rule. 						
Emergence L	3.1.5 – Emergenc cy Gas-Fired IC er ean Burn: 86 ppn	ngine nv @ 15% O2	· · · · · · · · · · · · · · · · · · ·	,		
NOx L	Rich Burn: 0.29 g/hp-hr Lean Burn < 500 BHP: 1.0 g/bhp-hr Lean Burn ≥ 500 BHP: 0.5 g/bhp-hr Rich Burn: 25 ppmvd @ 15% O2 (0.44 g/bhp-hr)					
SOx N	Natural gas, LPG, or Propane fuel					
PM10 N	Natural gas, LPG, or Propane fuel					
PM2.5 N	No Standard					
CO 2	2.0 g/bhp-hr					
	BACT Source: S (2/2/18) BA Rating/Siz <130 H ≥130 H (A) Clean than n T-BACT There are RULE REC Reg IX, F (Amended Emergency BACT Source: S. Guideline 3 Emergency VOC E NOx PM10 N PM2.5 N	BACT Source: SCAQMD BACT (2/2/18) BACT Guideline, I.C. Rating/Size VOC < 130 HP 1.5 g/bhp-hr (A) Clean fuel is defined as than natural gas for NO T-BACT There are no T-BACT stand. RULE REQUIREMENTS: Reg IX, Rule 1110.2 - E (Amended 6/3/16) Emergency standby engines BACT Source: SJVUAPCD BACT Guideline 3.1.5 - Emergence Emergency Gas-Fired IC er VOC Lean Burn: 86 ppn Rich Burn: 0.29 g/l Lean Burn < 500 E Lean Burn ≥ 500 E Lean Burn ≥ 500 E Rich Burn: 25 ppm SOx Natural gas, LPG, PM2.5 No Standard	BACT Source: SCAQMD BACT Guidelines for (2/2/18) BACT Guideline, I.C. Engine Spar — g/b Rating/Size VOC NOx < 130 HP 1.5 g/bhp-hr 1.5 g/bhp-hr (A) Clean fuel is defined as one that prod than natural gas for NOx, SOx, ROG T-BACT There are no T-BACT standards published RULE REQUIREMENTS: Reg IX, Rule 1110.2 — Emissions from (Amended 6/3/16) Emergency standby engines are exempt for the standards of the standard of the sta	BACT Source: SCAQMD BACT Guidelines for Non-Major (2/2/18) BACT Guideline, I.C. Engine Spark Ignition, Stare g/bhp-hr Rating/Size VOC NOX SOX < 130 HP 1.5 g/bhp-hr 1.5 g/bhp-hr Use of clean fuels (A) ≥ 130 HP 1.0 g/bhp-hr 1.5 g/bhp-hr (A) (A) Clean fuel is defined as one that produces air emisthan natural gas for NOX, SOX, ROG, and fine part T-BACT There are no T-BACT standards published in the clearing RULE REQUIREMENTS: Reg IX, Rule 1110.2 - Emissions from Gaseous-(Amended 6/3/16) Emergency standby engines are exempt from this Rule BACT Source: SJVUAPCD BACT Guideline 3.1.5 - Emergency Gas-Fired IC Engine (7/12) Emergency Gas-Fired IC engine VOC Lean Burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr Lean Burn ≥ 500 BHP: 1.0 g/bhp-hr Lean Burn ≥ 500 BHP: 0.5 g/bhp-hr Rich Burn: 25 ppmvd @ 15% O2 (0.44 g/bhp SOX Natural gas, LPG, or Propane fuel PM10 Natural gas, LPG, or Propane fuel PM2.5 No Standard	Source: SCAQMD BACT Guidelines for Non-Major Polluting Face (2/2/18) BACT Guideline, I.C. Engine Spark Ignition, Stationary, Emery — g/bhp-hr Rating/Size	

District/Agency	Best Available Control Technology (BACT)/Requirements					
San Joaquin Valley Unified APCD	T-BACT There are no T-BACT standards published in the clearinghouse for this cat RULE REQUIREMENTS: Rule 4702 – Internal Combustion Engines (Amended 11/14/13) Standby Engines are exempt from the emission limitations of this rule.					
	The engito stands	NSR Requirements for BACT ne BACT determinations lister by engines. e no T-BACT standards public				
	Rule Requirements: Regulation 4, Rule 69.4 – Stationary Reciprocating Internal Combustion Engines – Reasonably Available Control Technology (7/30/03) This rule applies to stationary I.C. Engines ≥ 50 BHP located at a stationary source which emits or has a potential to emit 50 tons per year or more of NOx. Standby Engines are exempt from the emission limitations of this rule.					
San Diego APCD	Regulation 4, Rule 69.4.1 – Stationary Reciprocating Internal Combustion Engines – Best Available Retrofit Control Technology (11/15/00) This rule applies to stationary I.C. Engines ≥ 50 BHP.					
	New or replacement rich-burn engines using fossil derived gaseous fuel					
	Published Value Naturally Aspirated Tu			Conversion for Turbocharged Engines (g/bhp-hr) ^(B)		
	VOC	250 ppmvd @ 15% O ₂	1.53	1.47		
	NOx	25 ppmvd @ 15% O ₂ OR 96% weight reduction	0.44	0.42		
	SOx	No standard	-	-		
	PM10	No standard	-	-		
	PM2.5	No standard	-	-		
	СО	4,500 ppmvd @ 15% O ₂	48.4	46.4		
	 (A) Based on Santa Barbara County APCD Piston IC Engine Technical Reference Document (11/1/02) emission factor conversions, Section II(B)(B7)(e)(vi). (B) Based on Santa Barbara County APCD Piston IC Engine Technical Reference Document (11/1/02) emission factor conversions, Section II(B)(B7)(e)(vii). 					

Best Available Control Technology (BACT)/Requirements					
Name and a constitution between a size and a size and a size and a size and a size a s					
New or i	replacement lean-burn engine	es using gaseous fuel			
Published Value		Conversion for Naturally Aspirated Engines (g/bhp-hr) ^(A)	Conversion for Turbocharged Engines (g/bhp-hr) ^(B)		
VOC	250 ppmvd @ 15% O ₂	1.53	1.47		
NOx	65 ppmvd @ 15% O ₂ OR 90% weight reduction	1.14	1.10		
SOx	No standard	-	-		
PM10	No standard	-	-		
PM2.5	No standard	-	-		
CO	4,500 ppmvd @ 15% O ₂	48.4	46.4		
 (A) Based on Santa Barbara County APCD Piston IC Engine Technical Reference Document (11/1/02) emission factor conversions, Section II(B)(B7)(e)(vi). (B) Based on Santa Barbara County APCD Piston IC Engine Technical Reference Document (11/1/02) emission factor conversions, Section II(B)(B7)(e)(vii). 					
BACT Source: BAAQMD BACT Guideline 96.3.4 (5/7/03)					
IC Engine - Spark Ignition, Natural Gas Fired Emergency Engine ≥ 50 BHP					
VOC	1. 1.0 g/bhp-hr (Achieved in Practice) 2. Lean burn technology or equivalent (Achieved in Practice)				
NOx	1. 1.0 g/bhp-hr (Achieved in Practice) 2. Lean burn technology or equivalent (Achieved in Practice)				
SOx	Natural Gas Fuel (Achieved in Practice)				
PM10	Natural Gas Fuel (Achieved in Practice)				
PM2.5	No Standard				
СО	2.75 g/bhp-hr (Achieved in Practice) Lean burn technology or equivalent (Achieved in Practice)				
T-BACT There are no T-BACT standards published in the clearinghouse for this category. RULE REQUIREMENTS: Reg 9, Rule 8 – Nitrogen Oxides and Carbon Monoxide from Stationary Internal Combustion Engines (7/25/07)					
	VOC NOx SOx PM10 PM2.5 CO (A) Base Doc (B) Base Doc (C) Base Doc	Published Value VOC 250 ppmvd @ 15% O2 NOx 65 ppmvd @ 15% O2 OR 90% weight reduction SOx No standard PM10 No standard PM2.5 No standard CO 4,500 ppmvd @ 15% O2 (A) Based on Santa Barbara County Document (11/1/02) emission fact (B) Based on Santa Barbara County Document (11/1/02) emission fact (B) Based on Santa Barbara County Document (11/1/02) emission fact (C) BACT Source: BAAQMD BACT Guideline 96.3.4 (5/7/03) IC Engine - Spark Ignition, Natural Gave (C) VOC 1. 1.0 g/bhp-hr (Achieved in 2. Lean burn technology or 60 (C) SOx 1. Natural Gas Fuel (Achieved PM10 1. Natural Gas Fuel (Achieved PM2.5 No Standard CO 1. 2.75 g/bhp-hr (Achieved in 2. Lean burn technology or 60 (C) T-BACT There are no T-BACT standards published (C) RULE REQUIREMENTS: Reg 9, Rule 8 - Nitrogen Oxides and Combustion Engines (7/25/07)	Published Value Naturally Aspirated Engines (g/bhp-hr)(A) VOC 250 ppmvd @ 15% O2 1.53 NOx 65 ppmvd @ 15% O2 0R 90% weight reduction SOX No standard - PM10 No standard - PM2.5 No standard - CO 4,500 ppmvd @ 15% O2 48.4 (A) Based on Santa Barbara County APCD Piston IC Engin Document (11/1/02) emission factor conversions, Section Based on Santa Barbara County APCD Piston IC Engin Document (11/1/02) emission factor conversions, Section Document (11/1/02) emission factor conversions, Petide Engine Document (

The following control technologies have been identified and are ranked based on stringency:

T	
	SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES
voc	For Spark Ignition, Emergency Standby Engines < 500 BHP 1. Lean burn: 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr [SJVAPCD] 2. 0.66 g/bhp-hr (0.99 g/-bhp-hr) ^(A) [EPA, IA-0102] 3. Lean burn: 1.0 g/hp-hr Rich burn: 50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller [SMAQMD] 4. 1.0 g/bhp-hr [BAAQMD] 5. 1.5 g/bhp-hr [SCAQMD] 6. 250 ppmvd @ 15% O ₂ [SDAPCD] (1.53 g/bhp for naturally aspirated engines) (1.47 g/bhp for turbocharged engines)
	For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. Lean burn: 86 ppmv @ 15% O₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr [SJVAPCD] 2. 0.44 g/bhp-hr [EPA, OK-0153] 3. Lean burn: 0.6 g/hp-hr Rich burn:50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller [SMAQMD] 4. 1.0 g/bhp-hr [SCAQMD, BAAQMD] 5. 250 ppmvd @ 15% O₂ [SDAPCD] (1.53 g/bhp for naturally aspirated engines) (1.47 g/bhp for turbocharged engines)
NOx	For Spark Ignition, Emergency Standby Engines < 500 BHP 1. Lean burn: 1.0 g/hp-hr Rich burn: 25 ppmvd @ 15 O ₂ OR 96% weight reduction [SMAQMD] 2. Lean burn: 1.0 g/bhp-hr Rich Burn: 25 ppmvd @ 15% O ₂ (0.44 g/bhp-hr) [SJVAPCD] 3. 1.0 g/bhp-hr [BAAQMD] 4. Rich Burn: 25 ppmvd @ 15% O ₂ OR 96% NOx weight reduction [SDAPCD] (0.44 g/bhp-hr for naturally aspirated engines) (0.42 g/bhp-hr for turbocharged engines) Lean Burn:65 ppmvd @ 15% O ₂ OR 90% NOx weight reduction (1.14 g/bhp-hr for naturally aspirated engines) (1.10 g/bhp-hr for turbocharged engines) 5. 0.78 lb/hr (1.35 g/bhp-hr) ^(B) [EPA, CA-1225] 6. 1.5 g/bhp-hr [SCAQMD]

	SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES
NOx	 For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. Lean burn: 0.5 g/bhp-hr, Rich Burn: 25 ppmvd @ 15% O₂ (0.44 g/bhp-hr) [SJVAPCD] 2. Lean burn: 0.5 g/hp-hr, Rich burn: 25 ppmvd @ 15 O₂OR 96% weight reduction [SMAQMD] 3. Rich Burn: 25 ppmvd @ 15% O₂ OR 96% NOx weight reduction [SDAPCD] (0.44 g/bhp-hr for naturally aspirated engines) (0.42 g/bhp-hr for turbocharged engines) Lean Burn:65 ppmvd @ 15% O₂ OR 90% NOx weight reduction (1.14 g/bhp-hr for naturally aspirated engines) (1.10 g/bhp-hr for turbocharged engines) 4. 0.5 g/bhp-hr [BPA, OK-0153] 5. 1.0 g/bhp-hr [SCAQMD]
SOx	For Spark Ignition, Emergency Standby Engines < 500 BHP 1. Natural gas fuel [BAAQMD] 2. Natural gas or equivalent fuel [SMAQMD] 3. Use of clean fuels ^(C) [SCAQMD] 4. Natural gas, LPG, or Propane fuel [EPA, SJVAPCD] 5. No standard [SDAPCD] For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. 0.0015 g/kwh (0.0011 g/hp-hr) [EPA, IN-0167 & IN-0185] ^(E) 2. Natural gas fuel [BAAQMD] 3. Natural gas or equivalent fuel [SMAQMD] 4. Use of clean fuels ^(C) [SCAQMD] 5. Natural gas, LPG, or Propane fuel [SJVAPCD] 6. No standard [SDAPCD]
PM10	For Spark Ignition, Emergency Standby Engines < 500 BHP 1. 0.0216 lb/hr [EPA, CA-1225] ^(F) 2. Natural gas fuel [BAAQMD] 3. Natural gas or equivalent fuel [SMAQMD] 4. Use of clean fuels ^(C) [SCAQMD] 5. Natural gas, LPG, or Propane fuel [SJVAPCD] 6. No standard [SDAPCD] For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. 0.0099 lb/MMBtu [EPA, MI-0401] 2. 0.0099 lb/MMBtu [SMAQMD] 3. Natural gas fuel [BAAQMD] 4. Use of clean fuels ^(C) [SCAQMD] 5. Natural gas, LPG, or Propane fuel [SJVAPCD] 6. No standard [SDAPCD]

	SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES
PM2.5	For Spark Ignition, Emergency Standby Engines < 500 BHP 1. Natural gas or equivalent fuel [SMAQMD] 2. Use of clean fuels [SCAQMD] 3. No standard [EPA, SJVAPCD, SDACPD, BAAQMD] For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. 0.0099 lb/MMBtu [EPA, MI-0401] 2. 0.0099 lb/MMBtu [SMAQMD] 3. Use of clean fuels ^(c) [SCAQMD] 4. No Standard [SJVAPCD, SDAPCD, BAAQMD]
со	For Spark Ignition, Emergency Standby Engines < 500 BHP 1. 2.0 g/hp-hr [SMAQMD, SCAQMD, SJVAPCD] 2. 2.75 g/bhp-hr [BAAQMD] 3. 4.0 g/bhp-hr [EPA, CA-1225] 4. 4,500 ppmvd @ 15% O₂ [SDAPCD]
VHAP ^(D) (T-BACT)	For Spark Ignition, Emergency Standby Engines < 500 BHP 1. 1.0 g/bhp-hr [SMAQMD] 2. No standard [EPA, ARB, SCAQMD, BAAQMD, SDAPVD, SJVAPCD] For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. 0.6 g/bhp-hr [SMAQMD] 2. No standard [EPA, ARB, SCAQMD, BAAQMD, SDAPVD, SJVAPCD]

- (A) Conversion from lb/hr to g/bhp-hr based on a 225 KW engine and a conversion factor of 0.7457 kw/hp.
- (B) Conversion from lb/hr to g/bhp-hr based on a 256 BHP engine.
- (C) Clean fuels is defined as one that produces air emissions equivalent to or lower than natural gas for NOx, SOx, ROG, and fine particulate matter (PM10).
- (D) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.
- (E) This BACT Determination did not specify if this was for a rich or lean burn engine. Compliance verification is listed as not verified. Therefore, this limit will not be considered achieved in practice.
- (F) This BACT Determination did not specify if this was for a rich or lean burn engine. Compliance verification is listed as unknown. Therefore, this limit will not be considered achieved in practice.
- (G) This BACT Determination did not specify if this was for a rich or lean burn engine. Compliance verification is listed as unknown. Therefore, this limit will not be considered achieved in practice.

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

	BEST CONTROL TECHNOLOGIES ACHIEVED							
Pollutant	Standard	Source						
	For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr	SJVAPCD						
VOC	For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr	SJVAPCD						
NOx	For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Lean burn: 1.0 g/hp-hr Rich burn: 25 ppmvd @ 15 O ₂ (0.44 g/hp-hr) OR 96% weight reduction	SMAQMD & SJVAPCD						
	For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Lean burn: 0.5 g/hp-hr Rich burn: 25 ppmvd @ 15 O₂ (0.44 g/hp-hr) OR 96% weight reduction	SJVAPCD						
SOx	For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel	SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD						
PM10	For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) 0.0099 lb/MMBtu	SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD SMAQMD, EPA MI-0401						

BEST CONTROL TECHNOLOGIES ACHIEVED						
Pollutant	Standard	Source				
	For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel	BAAQMD				
PM2.5 ^(A)	For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) 0.0099 lb/MMBtu	SMAQMD, EPA MI-0401				
	For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) 2.0 g/hp-hr	SMAQMD, SCAQMD, SJVAPCD				
CO	For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) 1.5 g/bhp-hr	SMAQMD				
VIJAD	For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr	SJVAPCD				
VHAP	For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr	SJVAPCD				

⁽A) All PM is expected to be less than 1.0 micrometer in diameter and therefore PM10 BACT is equivalent to PM2.5 BACT.

B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

During the most recent rulemaking for updates to the Airborne Toxic Control Measure for Stationary Compression Ignition Engines (Title 17, Cal. Code. Regs., §93115 to §93115.15), ARB conducted a cost effectiveness analysis to determine if selective catalytic reduction (SCR) was technologically feasible and cost effective for emergency use applications. (Initial Statement of Reasons for Proposed Rulemaking: Proposed Amendments to the Airborne Toxic Control Measure for Stationary Compression Ignition Engines, Appendix B, September 2010). Although

the analysis was for stationary compression ignition engines, the listed SCR challenges due to the operational nature of emergency standby engines is also applicable for stationary spark ignition engines.

The analysis concluded that SCR may be technologically feasible, but had some additional challenges. Because standby engines routinely operate only for scheduled maintenance and testing, the engines do not operate more than 15-30 minutes, and do operate at no or low load. Because of this the exhaust would not likely reach the temperature (260 °C to 540 °C) required for the catalyst to operate. To circumvent this problem, the engine would need to be operated with higher loads and in many cases for longer periods of time. This could be a challenge for most emergency standby applications as most businesses do not have load banks in house and would have to create a larger load on the engine to get the catalyst up to operational temperature. Urea handling and maintenance is also an important consideration. Urea crystallization in the lines can cause damage to the SCR system and to the engine itself. Crystallization in the lines is more likely in emergency standby engines due to their periodic and low hours of usage. Urea also has a shelf life of approximately two years. This could increase the cost of operating a SCR for emergency standby engines since the low number of annual hours of operation experienced by most emergency standby engines could lead to urea expiration. The urea would then have to be drained and replaced, creating an extra maintenance step and an increased cost to the end user.

ARB staff determined that while, SCR systems may be technically feasible, there are significant operational hurdles to overcome before routine use of SCR on emergency standby engines is practical. This is because the majority of operating hours for emergency standby engines occur during short 15 to 30 minute maintenance and testing checks are at low engine loads. In most cases, the temperature needed for the SCR catalyst to function will not be reached during this operation and the SCR will not provide the expected NOx reductions.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

Pollutant	Technologically Feasible Alternatives			
voc	No other technologically feasible option identified			
NOx	For lean burn engines: Selective Catalytic Reduction			
SOx	No other technologically feasible option identified			
PM10	No other technologically feasible option identified			
PM2.5	No other technologically feasible option identified			
СО	No other technologically feasible option identified			

Cost Effective Determination:

After identifying the technologically feasible control options, a cost analysis is performed to take into consideration economic impacts for all technologically feasible controls identified.

Maximum Cost per Ton of Air Pollutants Controlled

1. A control technology is considered to be cost-effective if the cost of controlling one ton of that air pollutant is less than the limits specified below (except coating operations):

Pollutant	Maximum Cost (\$/ton)
ROG	17,500
NO_X	24,500
PM10	11,400
SO_X	18,300
CO	TBD if BACT triggered

Cost Effectiveness Analysis Summary

SCR:

As shown in Attachment C, the cost effectiveness for the add on SCR system to control NOx to a 96% weight reduction was calculated to be \$181,576.47/ton for a 499 bhp engine and \$152,555.04/ton for a 1000 bhp engine (see attached Engine Cost Effectiveness Analysis). Since the cost per ton of NOx removal increases as engine size decreases and a 499 bhp engine was found to not be cost effective, the lower bound cost of a 50 bhp engine was not calculated. The following basic parameters were used in the analysis.

499 BHP Engine

NOx Control Level = 0.02356 lb/MMBtu (96% weight reduction)

NOx Baseline Level = 0.589 lb/MMBtu (160 ppmv @ 15% O2 per Subpart JJJJ)

Engine Rating = 499 BHP (4.8 MMBtu/hr)

Engine Operating Hours = 100 hours/year (maximum maintenance hours)

Equipment Life = 20 years

Direct Cost = \$139,848.01

Direct Annual Cost = \$8,778.86 per year

Indirect Annual Cost = \$15,862.08 per year

Total Annual Cost = \$24,640.94 per year

NOx Removed = 0.14 tons per year

Cost of NOx Removal = \$181,576.47 per ton reduced

1,000 BHP Engine

NOx Control Level = 0.02356 lb/MMBtu (96% weight reduction)

NOx Baseline Level = 0.589 lb/MMBtu (160 ppmv @ 15% O2 per Subpart JJJJ)

Engine Rating = 1,000 BHP (9.6 MMBtu/hr)

Engine Operating Hours = 100 hours/year (maximum maintenance hours)

Equipment Life = 20 years

Direct Cost = \$220,942.20

Direct Annual Cost = \$16,317.19 per year

Indirect Annual Cost = \$25,087.96 per year

Total Annual Cost = \$41,405.15 per year

NOx Removed = 0.27 tons per year

Cost of NOx Removal = \$152,555.04 per ton reduced

Therefore, the add-on SCR system is considered not cost effective for either engine size and is eliminated.

C. SELECTION OF BACT/T-BACT:

Based on the above analysis, BACT for VOC, NOx, SOx, PM10, and CO will remain at what is currently achieved in practice and BACT for PM2.5 will be set to be the same as for PM10.

Volatile hazardous air pollutants (VHAP) are the primary driver for health risks associated with gaseous fueled engines. VHAPs are emitted as VOC, and the same control technologies that control VOC also control VHAPs. Therefore, the BACT for VOC and T-BACT for VHAPs are the same.

Table 1: BACT #208 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-FUELED (EXCLUDING BIOGAS) < 500 BHP							
Pollutant	Standard	Source					
VOC	Lean Burn 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr)	SJVAPCD					
	Rich Burn 0.29 g/hp-hr						
	Lean-Burn: 1.0 g/bhp-hr	SMAQMD & SJVAPCD					
NOx	Rich Burn: 25 ppmvd @ 15 O ₂ (0.44 g/hp-hr) OR 96% weight reduction						
SOx	Natural gas fuel or equivalent fuel	SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD					
PM10	Natural gas fuel or equivalent fuel	SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD					
PM2.5	Natural gas fuel or equivalent fuel	SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD					
СО	2.0 g/bhp-hr	SMAQMD, SCAQMD, SJVAPCD					

Table 2: T-BACT #208 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS- FUELED (EXCLUDING BIOGAS) < 500 BHP							
Pollutant Standard Source							
VHAP ^(A)	Lean Burn 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr) <u>Rich Burn</u> 0.29 g/hp-hr	SJVAPCD					

⁽A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

Table 3: BACT #209 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-FUELED (EXCLUDING BIOGAS) ≥ 500 BHP						
Pollutant Standard Source						
VOC	Lean Burn 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr) Rich Burn 0.29 g/hp-hr	SJVAPCD				
NOx	Lean-Burn: 0.5 g/bhp-hr Rich Burn: 25 ppmvd @ 15 O ₂ (0.44 g/hp-hr) OR 96% weight reduction	SMAQMD & SJVAPCD				
SOx	Natural gas fuel or equivalent fuel	BAAQMD				
PM10	0.0099 lb/MMBtu	SMAQMD, EPA (MI-00401)				
PM2.5	0.0099 lb/MMBtu	SMAQMD, EPA (MI-00401)				
СО	1.5 g/p-hr	SMAQMD				

Table 4: T-BACT #209 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS- FUELED (EXCLUDING BIOGAS) ≥ 500 BHP							
Pollutant	Standard	Source					
VHAP ^(A)	Lean Burn 86 ppmv @ 15% O ₂ (0.4 g/bhp-hr) Rich Burn 0.29 g/hp-hr	SJVAPCD					

⁽A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

APPROVED BY:	DATE:	

Attachment A

Review of BACT Determinations published by EPA

List of BACT determinations published in EPA's RACT/BACT/LAER Clearinghouse (RBLC) for Natural Gas (includes propane & liquefied petroleum gas) I.C. Engines \leq 500 BHP & > 500 BHP

RBLC#	Permit Date ^(A)	Process Code (B), (C)	Engine Burn Type	Rating	Pollutant	Standard	Case-By-Case Basis
MI-0426	3/24/17	17.130	Not Listed	1,818 BHP	СО	11.0 lb/hr	BACT-PSD
<u>MI-0426</u>	3/24/17	17.130	Not Listed	1,818 BHP	NOx	4.0 lb/hr & 2.0 g/hp-hr	BACT-PSD
MI-0426	3/24/17	17.130	Not Listed	1,818 BHP	PM10	0.01 lb/mmBtu	BACT-PSD
MI-0426	3/24/17	17.130	Not Listed	1,818 BHP	PM2.5	0.01 lb/mmBtu	BACT-PSD
<u>CA-1240</u>	3/17/17	17.130	Not Listed	881 BHP	VOC	25 ppmvd @ 15% O2	Other Case-By-Case
<u>CA-1240</u>	3/17/17	17.130	Not Listed	881 BHP	СО	54 ppmvd @ 15% O2	Other Case-By-Case
<u>CA-1240</u>	3/17/17	17.130	Not Listed	881 BHP	NOx	5 ppmvd @ 15% O2	Other Case-By-Case
<u>CA-1240</u>	3/17/17	17.130	Not Listed	881 BHP	NH3	5 ppmvd @ 15% O2	Other Case-By-Case
<u>MI-0424</u>	12/5/16	17.130	Not Listed	1,462 BHP	СО	0.8 g/hp-hr	BACT-PSD
MI-0424	12/5/16	17.130	Not Listed	1,462 BHP	NOx	2.0 g/hp-hr	BACT-PSD
MI-0424	12/5/16	17.130	Not Listed	1,462 BHP	PM10	0.01 lb/mmBtu	BACT-PSD
MI-0424	12/5/16	17.130	Not Listed	1,462 BHP	PM2.5	0.01 lb/mmBtu	BACT-PSD
MI-0424	12/5/16	17.130	Not Listed	1,462 BHP	VOC	0.5 g/hp-hr	BACT-PSD
<u>MI-0420</u>	6/3/16	17.130	Not Listed	1,506 kW	СО	9.6 lb/hr & 4.0 g/hp-hr	BACT-PSD
MI-0420	6/3/16	17.130	Not Listed	1,506 kW	NOx	4.8 lb/hr & 2.0 g/hp-hr	BACT-PSD
MI-0420	6/3/16	17.130	Not Listed	1,506 kW	PM10	0.01 lb/mmBtu	BACT-PSD
MI-0420	6/3/16	17.130	Not Listed	1,506 kW	PM2.5	0.01 lb/mmBtu	BACT-PSD

RBLC#	Permit Date ^(A)	Process Code (B), (C)	Engine Burn Type	Rating	Pollutant	Standard	Case-By-Case Basis
SC-0170	11/7/14	17.130	Not Listed	500 kW	СО	Tier 3 emission standards	BACT-PSD
<u>SC-0170</u>	11/7/14	17.130	Not Listed	500 kW	VOC	Tier 3 emission standards	BACT-PSD
LA-0287	7/21/14	17.130	Not Listed	1175 BHP	NOx	2.0 g/hp-hr	BACT-PSD
LA-0287	7/21/14	17.130	Not Listed	1175 BHP	PM10	0.004 lb/hr	BACT-PSD
LA-0287	7/21/14	17.130	Not Listed	1175 BHP	PM2.5	0.004 lb/hr	BACT-PSD
<u>IN-0185</u>	4/24/14	17.130	Not Listed	620 BHP	PM10	0.2 g/kWh	BACT-PSD
<u>IN-0185</u>	4/24/14	17.130	Not Listed	620 BHP	PM2.5	0.2 g/kWh	BACT-PSD
<u>IN-0185</u>	4/24/14	17.130	Not Listed	620 BHP	SO2	0.0015 g/kWh	BACT-PSD
MI-0412	12/4/13	17.130	Not Listed	1,000 kW	СО	0.8 g/hp-hr	BACT-PSD
MI-0412	12/4/13	17.130	Not Listed	1,000 kW	NOx	2.0 g/hp-hr	BACT-PSD
MI-0412	12/4/13	17.130	Not Listed	1,000 kW	PM10	0.01 lb/mmBtu	BACT-PSD
MI-0412	12/4/13	17.130	Not Listed	1,000 kW	PM2.5	0.01 lb/mmBtu	BACT-PSD
MI-0412	12/4/13	17.130	Not Listed	1,000 kW	VOC	0.5 g/hp-hr	BACT-PSD
LA-0311	7/15/13	17.130	Not Listed	2,500 BHP	СО	27.56 lb/hr	BACT-PSD
<u>IN-0167</u>	4/16/13	17.130	Not Listed	620 BHP	NOx	0.5 g/hp-hr	BACT-PSD
<u>IN-0167</u>	4/16/13	17.130	Not Listed	620 BHP	PM10	0.2 g/kw-hr	BACT-PSD
<u>IN-0167</u>	4/16/13	17.130	Not Listed	620 BHP	PM2.5	0.2 g/kw-hr	BACT-PSD
<u>IN-0167</u>	4/16/13	17.130	Not Listed	620 BHP	SO2	0.0015 g/kw-hr	BACT-PSD
OK-0153	3/1/13	17.130	Not Listed	2,889 BHP	CO	0.43 g/hp-hr	BACT-PSD
OK-0153	3/1/13	17.130	Not Listed	2,889 BHP	NOx	0.5 g/hp-hr	BACT-PSD
OK-0153	3/1/13	17.130	Not Listed	2,889 BHP	PM2.5	0.01 lb/mmBtu	BACT-PSD
OK-0153	3/1/13	17.130	Not Listed	2,889 BHP	VOC	0.44 g/hp-hr	BACT-PSD
MI-0401	12/21/11	17.130	Not Listed	1,200 kW	NOx	0.5 g/hp-hr	BACT-PSD

RBLC#	Permit Date ^(A)	Process Code (B), (C)	Engine Burn Type	Rating	Pollutant	Standard	Case-By-Case Basis
<u>MI-0401</u>	12/21/11	17.130	Not Listed	1,200 kW	PM10	0.00999 lb/mmBtu	BACT-PSD
<u>MI-0401</u>	12/21/11	17.130	Not Listed	1,200 kW	PM2.5	0.00999 lb/mmBtu	BACT-PSD
LA-0256	12/06/2011	17.130	Not Listed	1,818 BHP	PM10	0.01 lb/hr	BACT-PSD, Operating Permit ^(D)
<u>LA-0256</u>	12/06/2011	17.130	Not Listed	1,818 BHP	PM2.5	0.01 lb/hr	BACT-PSD, Operating Permit ^(D)
<u>LA-0256</u>	12/06/2011	17.130	Not Listed	1,818 BHP	PM (TSP)	0.01 lb/hr	BACT-PSD, Operating Permit ^(D)
LA-0257	12/06/2011	17.130	Not Listed	2,012 BHP	СО	4.0 lb/bhp-r	BACT-PSD ^(E)
LA-0257	12/06/2011	17.130	Not Listed	2,012 BHP	NOx	2.0 g/bhp-hr	BACT-PSD ^(E)
LA-0257	12/06/2011	17.130	Not Listed	2,012 BHP	PM (TPM)	N/A	BACT-PSD
LA-0257	12/06/2011	17.130	Not Listed	2,012 BHP	VOC	1.0 g/bhp-r	BACT-PSD ^(E)
<u>CA-1192</u>	6/21/2011	17.130	Not Listed	860 BHP (550.0 KW)	СО	N/A	BACT-PSD ^(F)
<u>CA-1192</u>	6/21/2011	17.130	Not Listed	860 BHP (550.0 KW)	NOx	N/A	BACT-PSD ^(F)
<u>CA-1192</u>	6/21/2011	17.130	Not Listed	860 BHP (550.0 KW)	PM (TPM)	N/A	BACT-PSD ^(F)
<u>CA-1192</u>	6/21/2011	17.130	Not Listed	860 BHP (550.0 KW)	PM (PM10)	N/A	BACT-PSD ^(F)
<u>MI-0390</u>	10/14/2010	17.130	Not Listed	1818 BHP	NOx	0.5 g/bhp-hr	BACT-PSD, NSPS, NESHAP
LA-0232	6/24/2008	17.130	Not Listed	838 BHP	NOx	4.8 lb/hr	BACT-PSD, Operating Permit
LA-0232	6/24/2008	17.130	Not Listed	838 BHP	VOC	1.39 lb/hr	BACT-PSD, Operating Permit
MD-0036	3/10/2006	17.130	Not Listed	1,085 BHP (770KW)	СО	1.5 g/bhp-hr	BACT-PSD
MD-0036	3/10/2006	17.130	Not Listed	1,085 BHP (770KW)	NOx	2.0 g/bhp-hr	BACT-PSD
MD-0036	3/10/2006	17.130	Not Listed	1,085 BHP (770KW)	PM (FPM10)	0.0099 lb/MMBtu	BACT-PSD ^(G)

RBLC#	Permit Date ^(A)	Process Code (B), (C)	Engine Burn Type	Rating	Pollutant	Standard	Case-By-Case Basis
MD-0036	3/10/2006	17.130	Not Listed	1,085 BHP (770 KW)	VOC	0.6 g/hp-hr	LAER
<u>LA-0276</u>	12/15/16	17.230	Not Listed	150 kW	VOC	Comply with NSPS Subpart JJJJ	BACT-PSD
FL-0356	3/9/16	17.230	Not Listed	25 kW	СО	387 g/hp-hr	BACT-PSD
<u>CA-1225</u>	4/25/14	17.230	Not Listed	256 BHP	CO	4.0 g/hp-hr	BACT-PSD
<u>CA-1225</u>	4/25/14	17.230	Not Listed	256 BHP	NOx	0.78 lb/hr	BACT-PSD
<u>CA-1225</u>	4/25/14	17.230	Not Listed	256 BHP	FPM	0.0216 lb/hr	BACT-PSD
<u>CA-1225</u>	4/25/14	17.230	Not Listed	256 BHP	PM10	0.0216 lb/hr	BACT-PSD
LA-0311	7/15/13	17.230	Not Listed	300 BHP	СО	3.31 lb/hr	BACT-PSD
<u>IA-0102</u>	2/1/2012	17.230	Not Listed	225 KW	VOC	0.66 lb/hr	BACT-PSD ^(H)
WA-0316	6/14/2006	17.230	Not Listed	450 KW	NOx	82 g/hr	BACT-PSD ^(I)
<u>NV-0048</u>	5/16/2006	17.230	Not Listed	771 BHP (575 KW)	СО	2.0 g/bhp-hr	Other Case-by-Case, SIP, Operating Permit
<u>NV-0048</u>	5/16/2006	17.230	Not Listed	771 BHP (575 KW)	NOx	21.5 g/bhp-hr	Other Case-by-Case, SIP, Operating Permit
NV-0048	5/16/2006	17.230	Not Listed	771 BHP (575 KW)	PM (FPM10)	0.0410 g/bhp-hr	Other Case-by-Case, SIP, Operating Permit
NV-0048	5/16/2006	17.230	Not Listed	771 BHP (575 KW)	SOx	0.0052 g/bhp-hr	Other Case-by-Case, SIP, Operating Permit
<u>NV-0048</u>	5/16/2006	17.230	Not Listed	771 BHP (575 KW)	VOC	0.23 g/bhp-hr	Other Case-by-Case, SIP, Operating Permit

⁽A) Due to the large number of entries only determinations made (based on Permit Date) entered since 01/01/2005 are included in the above table.

⁽B) Process Code 17.130 includes Large Internal Combustion Engines (> 500 BHP) fueled using natural gas (includes propane and liquid petroleum gas).

⁽C) Process Code 17.230 includes Small Internal Combustion Engines (≤ 500 BHP) fueled using natural gas (includes propane and liquid petroleum gas).

⁽D) BACT was determined to be use of natural gas fuel and good combustion practices. Emission limits for PM10, PM2.5, and PM (TSP) were determined to be <0.01 lb/hr and was established by Louisiana Department of Environmental Quality Permit PSD-LA-754 for Westlake Vinyls

- Company, LP.
- (E) Emission Limits are based on 40 CFR Part 60 Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines. (NSPS, Subpart IIII)
- (F) The Ninth Circuit Court of Appeals issued a decision on 8/12/2014 that vacated the permit decision and remanded it to EPA. Therefore, this BACT determination has not yet been achieved in practice. Source: EPA Region IX, Avenal Energy Product.
- (G) Emission limit for PM is based on AP-42 PM condensable emission factor for natural gas-fired reciprocating engines.
- (H) BACT was determined to be good combustion practices. Emission limit for VOC was determined to be 0.66 lb/hr and was established by Iowa Department of Natural Resources; Air Quality Bureau, Title V Permit <u>03-TV-025R2</u> (page 133) for Alcoa, Inc.
- (I) BACT was determined to be non-selective catalytic reduction. Emission limit for NOx was determined to be ≤82 g/hr and was established by Washington State Department of Ecology; Air Quality Program, Permit PSD-01-09 Amendment 6 for Northwest Pipeline Corporation
 - = Not applicable to this determination. Equipment has not yet been achieved in practice or is for a specific purpose outside of the scope of this determination.
 - = Selected as the most stringent BACT determination achieved in practice.

Attachment B

Review of BACT Determinations published by ARB

List of BACT determinations published in ARB's BACT Clearinghouse for ICE: Spark Ignition, Natural Gas & ICE: Emergency, Spark Ignition:

Capacity	Source	Date	Engine Burn Type	NOx	voc	со	PM10	SOx
528 BHP	MBUAPCD	10/13/2005	Rich Burn	0.07 g/bhp-hr ^(A)	N/A	N/A	N/A	N/A
93 BHP	SCAQMD	10/06/2000	Rich Burn	0.15 g/bhp-hr ^(B)	0.15 g/bhp-hr	0.6 g/bhp-hr	N/A	N/A
1334 BHP	SCAQMD	12/7/1999	Rich Burn	1.5 g/bhp-hr ^(B)	1.5 g/bhp-hr ^(B)	2.0 g/bhp-hr ^(B)	N/A	N/A
750 BHP	SCAQMD(C)	N/A	Rich Burn	0.15 g/bhp-hr ^(B)	0.15 g/bhp-hr ^(B)	0.6 g/bhp-hr ^(B)	N/A	N/A
310 BHP	SMAQMD ^(D)	10/22/2004	Rich Burn	2.13 g/bhp-hr ^(A)	0.0449 ^(A)	1.6 g/bhp-hr ^(A)	0.152 g/bhp-hr	0.002 g/bhp-hr

⁽A) Add-on control – 3-way catalytic converter,

= Not enough information to determine if engine is for standby purposes

= Selected as the most stringent BACT determination achieved in practice.

⁽B) Add-on control – 3-way catalytic converter and air/fuel ratio controller

⁽C) SCAQMD is reconsidering the BACT requirement for future applications of this type. Source: SCAQMD Application No. 359876

⁽D) Emission limits are based on emissions for the specific engine and is not a standard for gaseous emergency standby engines

Attachment C Cost Effectiveness Calculations

ENGINE SCR COST EFFECTIVENESS CALCULATION

EPA AIR POLLUTION CONTROL COST MANUAL, Sixth Edition, EPA/452/B-02-001, January 2002

Section 4.2 - NOx Post-Combustion, Chapter 2 - Selective Catalytic Reduction

Cost Effectiveness =	\$ 181,576.47	\$/ton
Equipment		
Engine rating (499 BHP)	4.8	mmBTU/hr
Engine Operating hours	100	hours
Engine capacity factor	1	
SCR Operating Days	365	days
Total Capacity Factor	1	
Baseline NOx (30 ppm)	0.589	lb/mmBTU
SCR NOx (5 ppm)	0.02356	lb/mmBTU
Ammonia Slip	10	ppm
Ammonia Stoichiometric Ratio	1.05	
Stored Ammonia Conc	29	%
Ammonia Storage days	90	days
Sulfur Content	0.005	%
Pressure drop for SCR Ductwork	3	inches W.G.
Pressure drop for each Catalyst Layer	1	inches W.G.
Temperature at SCR Inlet	650	degrees F
Equipment Life	20	years
Annual interest Rate	5	%
Catalyst cost, Initial	240	\$/ft2
Catalyst cost, replacement	290	\$/ft2
Electrical Power cost	0.1124	\$/KWh
Ammonia Cost	0.101	\$/lb
Catalyst Life	24000	hr
Catalyst Layers	2 full, 1 empty	
Engine Calculations		
Q_{B}	4.8	mmBTU/hr
Q flue gas	1710.371508	acfm

 N_{NOx} 0.96

SCR Reactor Calculations

Vol _{Catalyst}	14.47935815		
A _{Catalyst}	1.781636988	ft2	
A _{SCR}	2.048882536	ft2	
I=w=	1.431391818	ft	
n _{layer}	3		
h_{layer}	3.708998943		
n_{total}	4		
h _{SCR}	51.83599577		ft

Reagent Calculations

M _{reagent}	1.098773675	
m_{sol}	3.788874742	lb/hr
q _{sol}	0.50615307	gph
Tank Volume	1093.290632	gal

Cost Estimation Direct Costs

DC \$139,848.01

Indirect Costs

General Facilities	\$6,992.40
Engineering and home office fees	\$13,984.80
Process Contingency	\$6,992.40
Total Indirect Installation Costs	\$27,969.60
Project Contingency	\$25,172.64
Total Plant Cost	\$192,990.25
Preproduction Cost	\$3,859.80
Inventory Capital	\$826.58
Total Capital Investment	\$197,676.63

Direct Annual Costs

Maintenance Costs	\$2,965.15		per yr
Power	2.04898176		KW
Annual Electricity		\$2,017.48	per yr

Reagent Solution Cost	\$3,352.24	per yr
Catalyst Replacement		
FWF	0.317208565	
Annual Catalyst Replacement	\$443.99	per yr
Total Variable Direct Cost	\$5,813.71	per yr
Total Direct Annual Cost	\$8,778.86	per yr
CRF	0.080242587	
Indirect Annual Cost	\$15,862.08	per yr
Total annual Cost	\$24,640.94	per yr
NOx Removed	0.14	tons
Cost of NOx removal	\$181,576.47	per ton

ENGINE SCR COST EFFECTIVENESS CALCULATION

EPA AIR POLLUTION CONTROL COST MANUAL, Sixth Edition, EPA/452/B-02-001, January 2002

Section 4.2 - NOx Post-Combustion, Chapter 2 - Selective Catalytic Reduction

Cost Effectiveness =	\$ 152,555.04	\$/ton
	7/	T /

_	•		
$-\alpha$		nm	ent
ьч	u	9111	CIIL

Engine rating (1000 HP)	9.6	mmBTU/hr
Engine Operating hours	100	hours
Engine capacity factor	1	
SCR Operating Days	365	days
Total Capacity Factor	1	
Baseline NOx (30 ppm)	0.589	lb/mmBTU
SCR NOx (5 ppm)	0.02356	lb/mmBTU
Ammonia Slip	10	ppm
Ammonia Stoichiometric Ratio	1.05	
Stored Ammonia Conc	29	%
Ammonia Storage days	90	days
Sulfur Content	0.005	%
Pressure drop for SCR Ductwork	3	inches W.G.
Pressure drop for each Catalyst Layer	1	inches W.G.
Temperature at SCR Inlet	650	degrees F
Equipment Life	20	years
Annual interest Rate	5	%
Catalyst cost, Initial	240	\$/ft2
Catalyst cost, replacement	290	\$/ft2
Electrical Power cost	0.1124	\$/KWh
Ammonia Cost	0.101	\$/lb
Catalyst Life	24000	hr
Catalyst Layers	2 full, 1 empty	

Boiler Calculations

Q_B	9.6	mmBTU/hr
Q flue gas	3420.743017	acfm

N_{NOx} 0.96

SCR Reactor Calculations

Vol _{Catalyst}	28.9587163	ft3	
A _{Catalyst}	3.563273976	ft2	
A _{SCR}	4.097765072	ft2	
I=w=	2.024293722	ft	
n _{layer}	3		
h _{layer}	3.708998943		
n _{total}	4		
h _{SCR}	51.83599577		ft

Reagent Calculations

m_{reagent}	2.197547351	lb/hr
m _{sol}	7.577749485	lb/hr
q _{sol}	1.012306141	gph
Tank Volume	2186.581265	gal

Cost Estimation Direct Costs

Indirect Costs

General Facilities	\$ 11,047.11
Engineering and home office fees	\$ 22,094.22
Process Contingency	\$ 11,047.11
Total Indirect Installation Costs	\$ 44,188.44
Project Contingency	\$ 39,769.60
Total Plant Cost	\$ 304,900.24
Preproduction Cost	\$ 6,098.00
Inventory Capital	\$ 1,653.16
Total Capital Investment	\$ 312,651.41

Direct Annual Costs

Maintenance Costs	\$ 4,689.77	per yr
Power	4.09796352	KW
Annual Electricity	\$ 4,034.95	per yr

Reagent Solution Cost	\$	6,704.49	per yr	
Catalyst Replacement				
FWF	0.317208565			
Annual Catalyst Replacement	\$	887.98	per yr	
Total Variable Direct Cost	\$	11,627.42	per yr	
Total Direct Annual Cost	\$	16,317.19	per yr	
CRF		0.080242587		
Indirect Annual Cost	\$	25,087.96	per yr	
Total annual Cost	\$	41,405.15	per yr	
NOx Removed		0.27	tons	
Cost of NOx removal	\$	152,555.04	per ton	