

CLIENT

Sacramento Metropolitan AQMD

PROJECT SITE

AB617 VOC Analysis

PROJECT NO.

Contract 2019-00000079

AAC PROJECT NO.

: 201561

REPORT DATE

: 09/21/2020

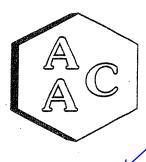
On September 26, 2020, Atmospheric Analysis & Consulting, Inc. received four (4) Six-Liter Silonite Canisters for hydrocarbons analysis (C₂-C₁₂) PAMS Protocol by GC/MS/FID. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

This section provides information about the sample such as where the sample was collected, the number assigned by the lab, and the canister pressure as received by the lab.

Sampling Interval	Lab No.	Receipt Pressure (mmHg)
1229-ImpactCh	201561-11854	757.6
1279-VFW	201561-11855	758.3
1236-Station56	201561-11856	202.5
1190-Sump50	201561-11857	228.6

An initial reading of the canisters' pressures were taken and recorded. Holding times for preparation and analysis were complied with.

Hydrocarbons analysis by GC/MS/FID - Up to a 500mL aliquot of sample is concentrated, put through a water and CO₂ management system, cryofocused and injected into the GC/MS/FID for analysis following EPA Method TO-14A while additionally adhering to the EPA PAMS Technical Assistance Document protocol as specified in the SOW.


No problems were encountered during receiving, preparation and/ or analysis of these samples. The test results included in this report meet all requirements of the NELAC Standards and/or AAC SOP# PAMS.09.

I certify that this data is technically accurate, complete and in compliance with the terms and conditions of the contract. The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy data package.

If you have any questions or require further explanation of data results, please contact the undersigned.

Technical Director

This report consists of 19 pages.

: 201561

: PPB (v/v)

: AIR

CLIENT

MATRIX

UNITS

PROJECT NO

Atmospheric Analysis & Consulting, Inc.

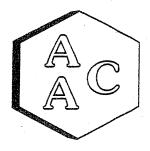
This section shows the project number assigned by the lab and the units the data is reported in.

: Sacramento Metropolitan AQMD

This section shows the date the sample was received and the date the data was reported.

Laboratory Analysis Report

These sections show the sample dates, site, and the canister dilution factor applied to all data as calculated by the lab.


DATE RECEIVED : 08/26/2020
DATE REPORTED : 09/21/2020

This column shows the unitless method reporting limit as calculated by the lab

HYDROCARBONS (C2-C12) SPECIATED

				(C2-C12) SPE	7				
Client ID		1229-Impact(<i>a</i> ,		1279-VFW		Sample	36.41.1
AACID		201561-1185	4	Sample	·	201561-118		Reporting	Method
Date Sampled		08/19/2020		Reporting		08/19/2020		Limit	Reporting
Date Analyzed		09/15/2020		Limit (SRL)		09/15/2020)		Limit
Can Dilution Factor		1.34		(MRLxDF's)		1.34	-	(SRL)	(MRL)
	Result	Qualifier	Analysis DF	<u> </u>	Result	Qualifier	Analysis DF	(MRLxDF's)	
Ethylene	2.23	A	1.0	0.67	2.20		1.0	0.67	0.50
Acetylene	0.97	<u> </u>	1.0	0.67	<srl< td=""><td>U</td><td>1.0</td><td>0.67</td><td>0.50</td></srl<>	U	1.0	0.67	0.50
Ethane	4.30		1.0	0.67	2.86		1.0	0.67	0.50
Propylene	0.71		1.0	0.45	0.69		1.0	0.45	0.33
Propane	3.29		1.0	0.45	1.86		1.0	0.45	0.33
Isobutane	<srl< td=""><td>U U</td><td>1.0</td><td>0.34</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.34</td><td>0.25</td></srl<></td></srl<>	U U	1.0	0.34	<srl< td=""><td>U</td><td>1.0</td><td>0.34</td><td>0.25</td></srl<>	U	1.0	0.34	0.25
1-Butene	<srl< td=""><td>U</td><td>1.0</td><td>0.34</td><td><srl_< td=""><td>Ü</td><td>1.0</td><td>0.34</td><td>0.25</td></srl_<></td></srl<>	U	1.0	0.34	<srl_< td=""><td>Ü</td><td>1.0</td><td>0.34</td><td>0.25</td></srl_<>	Ü	1.0	0.34	0.25
n-Butane	0.77		1.0	0.34	0.88		1.0	0.34	0.25
rans-2-Butene	<srl< td=""><td>U</td><td>1.0</td><td>Sample</td><td>reporting lii</td><td>mits are the i</td><td>method</td><td>0.34</td><td>0.25</td></srl<>	U	1.0	Sample	reporting lii	mits are the i	method	0.34	0.25
cis-2 This column shows the	<srl< td=""><td>U</td><td>1.0</td><td>reportin</td><td>ng limit mult</td><td>iplied by the</td><td>dilution</td><td>0.34</td><td>0.25</td></srl<>	U	1.0	reportin	ng limit mult	iplied by the	dilution	0.34	0.25
ISOD6	1.19		1.0	factor.		, , , , ,		0.27	0.20
I-Pe 24-hr concentrations, in	1 <srl< td=""><td>U</td><td>1.0</td><td>VI/</td><td></td><td>. · · ·</td><td>*.0</td><td>0.27</td><td>0.20</td></srl<>	U	1.0	VI/		. · · ·	*.0	0.27	0.20
the units given above,	278		20	5.36	0.76		1.0	0.27	0.20
	0.79		1.0	0.27	0.76		1.0	0.27	0.20
that were sampled in t	he <srl< td=""><td>U</td><td>1.0 Th</td><td>is column is t</td><td>he unitless a</td><td>analysis diluti</td><td>on 1.0</td><td>0.27</td><td>0.20</td></srl<>	U	1.0 Th	is column is t	he unitless a	analysis diluti	on 1.0	0.27	0.20
cis-2	<srl< td=""><td>U</td><td>1.0 fac</td><td>ctor calculated</td><td>d by the lab</td><td>during the</td><td>1.0</td><td>0.27</td><td>0.20</td></srl<>	U	1.0 fac	ctor calculated	d by the lab	during the	1.0	0.27	0.20
<u>2,2-1</u> community.	<srl< td=""><td>U</td><td>1.0 an</td><td>alysis, separa</td><td>te from the</td><td>can dilution</td><td>1.0</td><td>0.22</td><td>0.17</td></srl<>	U	1.0 an	alysis, separa	te from the	can dilution	1.0	0.22	0.17
Cycle	<srl< td=""><td>U</td><td>1 ()</td><td>ctor.</td><td></td><td></td><td>1.0</td><td>0.27</td><td>0.20</td></srl<>	U	1 ()	ctor.			1.0	0.27	0.20
2,3-Dimethylbutane	chidos code	es applied by th	1.0				1.0	0.22	0.17
z-wieuryrpentane			1.0	0.22	0.68		1.0	0.22	0.17
3-Methylpentane lab if there an	•		1.0	0.22	0.27		1.0	0.22	0.17
1-Hexene necessary for	the data use	er. The	1.0	0.22	<srl< td=""><td>U</td><td>1.0</td><td>0.22</td><td>0.17</td></srl<>	U	1.0	0.22	0.17
n-Hexane description of	the code is	at the end of t	he 1.0	0.22	0.24		1.0	0.22	0.17
Methylcyclopentane table.			1.0	0.22	0.26		1.0	0.22	0.17
2,4-Dimethylpentane			1.0	0.19	<srl< td=""><td>U</td><td>1.0</td><td>0.19</td><td>0.14</td></srl<>	U	1.0	0.19	0.14
Benzene	0.54		1.0	0.22	0.37		1.0	0.22	0.17
Cyclohexane	0.78		1.0	0.22	<srl< td=""><td>U</td><td>1.0</td><td>0.22</td><td>0.17</td></srl<>	U	1.0	0.22	0.17
2-Methylhexane	0.37		1.0	0.19	<srl< td=""><td>U</td><td>1.0</td><td>0.19</td><td>0.14</td></srl<>	U	1.0	0.19	0.14
2,3-Dimethylpentane	0.20		1.0	0.19	<srl< td=""><td>U</td><td>1.0</td><td>0.19</td><td>0.14</td></srl<>	U	1.0	0.19	0.14
3-Methylhexane	0.58		1.0	0.19	0.47		1.0	0.19	0.14
2,2,4-Trimethylpentane	0.20		1.0	0.17	0.80		1.0	0.17	0.13
n-Heptane	0.48		1.0	0.19	<srl< td=""><td>Ū</td><td>1.0</td><td>0.19</td><td>0.14</td></srl<>	Ū	1.0	0.19	0.14
Methylcyclohexane	<srl< td=""><td>. U</td><td>1.0</td><td>0.19</td><td><srl< td=""><td>Ū</td><td>1.0</td><td>0.19</td><td>0.14</td></srl<></td></srl<>	. U	1.0	0.19	<srl< td=""><td>Ū</td><td>1.0</td><td>0.19</td><td>0.14</td></srl<>	Ū	1.0	0.19	0.14
2,3,4-Trimethylpentane	0.29		1.0	0.17	1.62		1.0	0.17	0.13

www.aaclab.com • (805) 650-1642

Laboratory Analysis Report

: Sacramento Metropolitan AQMD : 201561

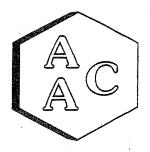
DATE RECEIVED

: 08/26/2020

CLIENT PROJECT NO

DATE REPORTED

MATRIX


: 09/21/2020

: AIR : PPB (v/v)

HYDROCARBONS (C2-C12) SPECIATED

Client ID AAC ID		1229-Impact 201561-118	54	Sample				Sample Reporting	Method
Date Sampled Date Analyzed		08/19/2020 09/15/2020		Reporting				Limit	Reporting
Can Dilution Factor		1.34	<u> </u>	Limit (SRL)		09/15/202 1.34	U	(SRL)	Limit
Cur Dittator Lactor	Result	Oualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
Toluene	7.05		1.0	0.19	2.31	Quantite	1.0	0.19	0.14
2-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.17	<srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<>	U	1.0	0.17	0.13
3-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td><srl< td=""><td>Ü</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.17	<srl< td=""><td>Ü</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<>	Ü	1.0	0.17	0.13
n-Octane	<srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.17	<srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<>	U	1.0	0.17	0.13
Ethylbenzene	0.26		1.0	0.17	0.28		1.0	0.17	0.13
m/p-Xylenes	0.60		1.0	0.17	0.73	,	1.0	0.17	0.13
Styrene	<srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.17	<srl< td=""><td>U</td><td>1.0</td><td>0.17</td><td>0.13</td></srl<>	U	1.0	0.17	0.13
o-Xylene	0.25		1.0	0.17	0.23		1.0	0.17	0.13
Nonane	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td><srl< td=""><td>U ·</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.15	<srl< td=""><td>U ·</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	U ·	1.0	0.15	0.11
Isopropylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.15	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	U	1.0	0.15	0.11
n-Propylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td><srl< td=""><td>U .</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.15	<srl< td=""><td>U .</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	U .	1.0	0.15	0.11
m-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.15	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	U	1.0	0.15	0.11
p-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td><srl< td=""><td>Ū.</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.15	<srl< td=""><td>Ū.</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	Ū.	1.0	0.15	0.11
1,3,5-Trimethylbenzene	0.16		1.0	0.15	0.62		1.0	0.15	0.11
o-Ethyltoluene	- <srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.15	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	U	1.0	0.15	0.11
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.17</td><td></td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	U	1.0	0.15	0.17		1.0	0.15	0.11
n-Decane	<srl< td=""><td>U</td><td>1.0</td><td>0.13</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.13</td><td>0.10</td></srl<></td></srl<>	U	1.0	0.13	<srl< td=""><td>U</td><td>1.0</td><td>0.13</td><td>0.10</td></srl<>	U	1.0	0.13	0.10
1,2,3-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.15</td><td>0.32</td><td></td><td>1.0</td><td>0.15</td><td>0.11</td></srl<>	U	1.0	0.15	0.32		1.0	0.15	0.11
m-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.13</td><td>0.19</td><td></td><td>1.0</td><td>0.13</td><td>0.10</td></srl<>	U	1.0	0.13	0.19		1.0	0.13	0.10
p-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.13</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.13</td><td>0.10</td></srl<></td></srl<>	U	1.0	0.13	<srl< td=""><td>U</td><td>1.0</td><td>0.13</td><td>0.10</td></srl<>	U	1.0	0.13	0.10
n-Undecane	<srl< td=""><td>U</td><td>1.0</td><td>0.12</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.12</td><td>0.09</td></srl<></td></srl<>	U	1.0	0.12	<srl< td=""><td>U</td><td>1.0</td><td>0.12</td><td>0.09</td></srl<>	U	1.0	0.12	0.09
n-Dodecane	<srl< td=""><td>U</td><td>1.0</td><td>0.11</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.11</td><td>0.08</td></srl<></td></srl<>	U	1.0	0.11	<srl< td=""><td>U</td><td>1.0</td><td>0.11</td><td>0.08</td></srl<>	U	1.0	0.11	0.08

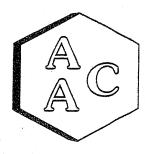
U - Compound was analyzed for, but was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT PROJECT NO : Sacramento Metropolitan AQMD

DATE RECEIVED

: 08/26/2020


PROJECT NO MATRIX UNITS : 201561 : AIR : ug/m3

This part of the report is in different units than above.

DATE REPORTED : 09/21/2020

HYDROCARBONS (C2-C12) SPECIATED

Client ID AAC ID		1229-Impact 201561-118		Sample		1279-VFV 201561-118		Sample	Method
Date Sampled		08/19/2020		Reporting		08/19/202		Reporting	Reporting
Date Analyzed		09/15/2020		Limit (SRL)		09/15/202		Limit	Limit
Can Dilution Factor		1.34	-	(MRLxDF's)	7			(SRL)	(MRL)
	Result	Qualifier	Analysis DF	(MIKLADI S)			(MRLxDF's)	(MIKL)	
Ethylene	2.55	***************************************	1.0	0.77	2.53		1.0	0.77	0.57
Acetylene	1.03		1.0	0.71	<srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td>0.53</td></srl<>	U	1.0	0.72	0.53
Ethane	5.28		1.0	0.82	3.51		1.0	0.83	0.61
Propylene	1.21		1.0	0.77	1.19		1.0	0.77	0.57
Propane	5.93		1.0	0.81	3.36		1.0	0.81	0.60
Isobutane	<srl< td=""><td>U</td><td>1.0</td><td>0.80</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.80</td><td>0.59</td></srl<></td></srl<>	U	1.0	0.80	<srl< td=""><td>U</td><td>1.0</td><td>0.80</td><td>0.59</td></srl<>	U	1.0	0.80	0.59
1-Butene	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
n-Butane .	1.83		1.0	0.80	2.09		1.0	0.80	0.59
trans-2-Butene	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
cis-2-Butene	<srl< td=""><td>U .</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U .	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
Isopentane	3.50		1.0	0.79	7.11		1.0	0.79	0.59
1-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
n-Pentane	820		20	15.8	2.24		1.0	0.79	0.59
Isoprene	2.2		1.0	0.75	2.11		1.0	0.75	0.56
trans-2-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
cis-2-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
2,2-Dimethylbutane	. <srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<></td></srl<>	U	1.0	0.79	<srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<>	U	1.0	0.79	0.59
Cyclopentane	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
2,3-Dimethylbutane	<srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<></td></srl<>	U	1.0	0.79	<srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<>	U	1.0	0.79	0.59
2-Methylpentane	1.95		1.0	0.79	2.41		1.0	0.79	0.59
3-Methylpentane	0.81		1.0	0.79	0.95		1.0	0.79	0.59
1-Hexene	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
n-Hexane	0.81		1.0	0.79	0.83		1.0	0.79	0.59
Methylcyclopentane	0.81		1.0	0.77	0.89		1.0	0.77	0.57
2,4-Dimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<></td></srl<>	U	1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<>	U	1.0	0.79	0.59
Benzene	1.73		1.0	0.71	1.17		1.0	0.72	0.53
Cyclohexane	2.69		1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
2-Methylhexane	1.51		1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<>	U	1.0	0.79	0.59
2,3-Dimethylpentane	0.80		1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<>	U	1.0	0.79	0.59
3-Methylhexane	2.39		1.0	0.78	1.91		1.0	0.79	0.59
2,2,4-Trimethylpentane	0.95		1.0	0.78	3.74		1.0	0.78	0.58
n-Heptane	1.97		1.0	0.78	<srl< td=""><td>U ·</td><td>1.0</td><td>0.79</td><td>0.59</td></srl<>	U ·	1.0	0.79	0.59
Methylcyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<></td></srl<>	U	1.0	0.77	<srl< td=""><td>U</td><td>1.0</td><td>0.77</td><td>0.57</td></srl<>	U	1.0	0.77	0.57
2,3,4-Trimethylpentane	1.36	l	1.0	0.78	7.56	L	1.0	0.78	0.58

Laboratory Analysis Report

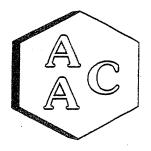
CLIENT PROJECT NO : Sacramento Metropolitan AQMD

: 201561

MATRIX UNITS : AIR : ug/m3 DATE RECEIVED

: 08/26/2020

DATE REPORTED


: 09/21/2020

HYDROCARBONS (C2-C12) SPECIATED

Client ID		1229-Impact	:Ch			1279-VFV	V	Sample	
AACID		201561-118		Sample		201561-118	55	Reporting	Method
Date Sampled		08/19/2020		Reporting	08/19/2020			Limit	Reporting
Date Analyzed	•	09/15/2020)	Limit (SRL)		09/15/202	0		Limit
Can Dilution Factor		1.34		(MRLxDF's)		1.34		(SRL)	(MRL)
	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF	(MRLxDF's)	(1.22-2)
Toluene	26.6	· ·	1.0	0.72	8.69		1.0	0.72	0.54
2-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<></td></srl<>	U	1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<>	U	1.0	0.78	0.58
3-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<></td></srl<>	U	1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<>	U	1.0	0.78	0.58
n-Octane	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<></td></srl<>	U	1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<>	U	1.0	0.78	0.58
Ethylbenzene	1.14		1.0	-0.73	1.21		1.0	0.73	0.54
m/p-Xylenes	2.58	-	1.0	0.73	3.19		1.0	0.73	0.54
Styrene	<srl< td=""><td>U</td><td>1.0</td><td>0.71</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td>0.53</td></srl<></td></srl<>	U	1.0	0.71	<srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td>0.53</td></srl<>	U	1.0	0.72	0.53
o-Xylene	1.11		1.0	0.73	1.00		1.0	0.73	0.54
Nonane	<srl< td=""><td>· U</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<></td></srl<>	· U	1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<>	U	1.0	0.78	0.58
Isopropylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td><srl td="" ·<=""><td>U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl></td></srl<>	U	1.0	0.73	<srl td="" ·<=""><td>U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl>	U	1.0	0.73	0.55
n-Propylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<></td></srl<>	U	1.0	0.73	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<>	U	1.0	0.73	0.55
m-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td><srl< td=""><td>. U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<></td></srl<>	U	1.0	0.73	<srl< td=""><td>. U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<>	. U	1.0	0.73	0.55
p-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<></td></srl<>	U	1.0	0.73	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<>	U	1.0	0.73	0.55
1,3,5-Trimethylbenzene	0.78		1.0	0.73	3.05		1.0	0.73	0.55
o-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td><srl< td=""><td>. U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<></td></srl<>	U	1.0	0.73	<srl< td=""><td>. U</td><td>1.0</td><td>0.73</td><td>0.55</td></srl<>	. U	1.0	0.73	0.55
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td>0.86</td><td></td><td>1.0</td><td>0.73</td><td>0.55</td></srl<>	U	1.0	0.73	0.86		1.0	0.73	0.55
n-Decane	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<></td></srl<>	U	1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<>	U	1.0	0.78	0.58
1,2,3-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.73</td><td>1.56</td><td></td><td>1.0</td><td>0.73</td><td>0.55</td></srl<>	U	1.0	0.73	1.56		1.0	0.73	0.55
m-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>1.04</td><td></td><td>1.0</td><td>0.74</td><td>0.55</td></srl<>	U	1.0	0.74	1.04		1.0	0.74	0.55
p-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.55</td></srl<></td></srl<>	U	1.0	0.74	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.55</td></srl<>	U	1.0	0.74	0.55
n-Undecane	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U.</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<></td></srl<>	U	1.0	0.78	<srl< td=""><td>U.</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<>	U.	1.0	0.78	0.58
n-Dodecane	<srl< td=""><td>U d. gp</td><td>1.0</td><td>0.78</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<></td></srl<>	U d. gp	1.0	0.78	<srl< td=""><td>U</td><td>1.0</td><td>0.78</td><td>0.58</td></srl<>	U	1.0	0.78	0.58

U - Compound was analyzed for, but was not detected at or above the SRL.

Sucha Parmar, Ph.D. Technical Director

Laboratory Analysis Report

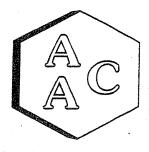
: Sacramento Metropolitan AQMD : 201561

DATE RECEIVED

: 08/26/2020

CLIENT PROJECT NO

DATE REPORTED


: 09/21/2020

MATRIX

: AIR . : PPB (v/v)

HYDROCARBONS (C2-C12) SPECIATED

Client ID AAC ID		1236-Station 201561-118		Sample		1190-Sump 201561-118		Sample	Method
Date Sampled		08/19/202		Reporting	08/19/2020			Reporting	Reporting
Date Analyzed	· · · · · · · · · · · · · · · · · · ·	09/15/202		Limit (SRL)				Limit	Limit
Can Dilution Factor		8.32		(MRLxDF's)	-)			(SRL)	
	Result	Qualifier	Analysis DF	(MKLXDF'S)	Result	Oualifier	Analysis DF	(MRLxDF's)	(MRL)
Ethylene	3.15	Quantital	1.0	2.52	3.54	Vanninei	1.0	2.22	0.50
Acetylene	<srl< td=""><td>Ŭ.</td><td>1.0</td><td>2.52</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.22</td><td>0.50</td></srl<></td></srl<>	Ŭ.	1.0	2.52	<srl< td=""><td>U</td><td>1.0</td><td>2.22</td><td>0.50</td></srl<>	U	1.0	2.22	0.50
Ethane	4.53		1.0	2.52	5.67		1.0	2.22	0.50
Propylene	<srl< td=""><td>U</td><td>1.0</td><td>1.68</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.48</td><td>0.33</td></srl<></td></srl<>	U	1.0	1.68	<srl< td=""><td>U</td><td>1.0</td><td>1.48</td><td>0.33</td></srl<>	U	1.0	1.48	0.33
Propane	5.94		1.0	1.68	5.32		1.0	1.48	0.33
Isobutane	<srl< td=""><td>U</td><td>1.0</td><td>1.26</td><td><srl< td=""><td>U .</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<></td></srl<>	U	1.0	1.26	<srl< td=""><td>U .</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<>	U .	1.0	1.11	0.25
1-Butene	<srl< td=""><td>Ū</td><td>1.0</td><td>1.26</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<></td></srl<>	Ū	1.0	1.26	<srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<>	U	1.0	1.11	0.25
n-Butane	<srl< td=""><td>U</td><td>1.0</td><td>1.26</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<></td></srl<>	U	1.0	1.26	<srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<>	U	1.0	1.11	0.25
trans-2-Butene	<srl< td=""><td>U</td><td>1.0</td><td>1.26</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<></td></srl<>	U	1.0	1.26	<srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<>	U	1.0	1.11	0.25
cis-2-Butene	<srl< td=""><td>U</td><td>1.0</td><td>1.26</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<></td></srl<>	U	1.0	1.26	<srl< td=""><td>U</td><td>1.0</td><td>1.11</td><td>0.25</td></srl<>	U	1.0	1.11	0.25
Isopentane	1.52		1.0	1.01	2.52		1.0	0.89	0.20
1-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>1.01</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<></td></srl<>	U	1.0	1.01	<srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<>	U	1.0	0.89	0.20
n-Pentane	<srl< td=""><td>U</td><td>1.0</td><td>1.01</td><td>1.55</td><td></td><td>1.0</td><td>0.89</td><td>0.20</td></srl<>	U	1.0	1.01	1.55		1.0	0.89	0.20
Isoprene	<srl< td=""><td>U</td><td>1.0</td><td>1.01</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<></td></srl<>	U	1.0	1.01	<srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<>	U	1.0	0.89	0.20
trans-2-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>1.01</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<></td></srl<>	U	1.0	1.01	<srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<>	U	1.0	0.89	0.20
cis-2-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>1.01</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<></td></srl<>	U	1.0	1.01	<srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<>	U	1.0	0.89	0.20
2,2-Dimethylbutane	<srl< td=""><td>U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	U	1.0	0.84	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<>	U	1.0	0.74	0.17
Cyclopentane	<srl< td=""><td>U</td><td>1.0</td><td>1.01</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<></td></srl<>	U	1.0	1.01	<srl< td=""><td>U</td><td>1.0</td><td>0.89</td><td>0.20</td></srl<>	U	1.0	0.89	0.20
2,3-Dimethylbutane	<srl< td=""><td>U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	U	1.0	0.84	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<>	U	1.0	0.74	0.17
2-Methylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	U	1.0	0.84	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<>	U	1.0	0.74	0.17
3-Methylpentane	<srl< td=""><td>. U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	. U	1.0	0.84	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<>	U	1.0	0.74	0.17
1-Hexene	<srl< td=""><td>U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>. 1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	U	1.0	0.84	<srl< td=""><td>U</td><td>. 1.0</td><td>0.74</td><td>0.17</td></srl<>	U	. 1.0	0.74	0.17
n-Hexane	<srl< td=""><td>U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U .</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	U	1.0	0.84	<srl< td=""><td>U .</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<>	U .	1.0	0.74	0.17
Methylcyclopentane	<srl< td=""><td>U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74⁻</td><td>0.17</td></srl<></td></srl<>	U	1.0	0.84	<srl< td=""><td>U</td><td>1.0</td><td>0.74⁻</td><td>0.17</td></srl<>	U	1.0	0.74 ⁻	0.17
2,4-Dimethylpentane	<srl< td=""><td>Ŭ</td><td>1.0</td><td>0.72</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<></td></srl<>	Ŭ	1.0	0.72	<srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<>	U	1.0	0.64	0.14
Benzene	<srl< td=""><td>U</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	U	1.0	0.84	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<>	U	1.0	0.74	0.17
Cyclohexane	<srl< td=""><td>Ū</td><td>1.0</td><td>0.84</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<></td></srl<>	Ū	1.0	0.84	<srl< td=""><td>U</td><td>1.0</td><td>0.74</td><td>0.17</td></srl<>	U	1.0	0.74	0.17
2-Methylhexane	<srl< td=""><td>Ŭ</td><td>1.0</td><td>0.72</td><td><srl_< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl_<></td></srl<>	Ŭ	1.0	0.72	<srl_< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl_<>	U	1.0	0.64	0.14
2,3-Dimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<></td></srl<>	U	1.0	0.72	<srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<>	U	1.0	0.64	0.14
3-Methylhexane	<srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<></td></srl<>	U	1.0	0.72	<srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<>	U	1.0	0.64	0.14
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	U	1.0	0.56	0.13
n-Heptane	<srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<></td></srl<>	U	1.0	0.72	<srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<>	U	1.0	0.64	0.14
Methylcyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<></td></srl<>	U	1.0	0.72	<srl< td=""><td>U</td><td>1.0</td><td>0.64</td><td>0.14</td></srl<>	U	1.0	0.64	0.14
2,3,4-Trimethylpentane	1.35		1.0	0.63	2.20		1.0	0.56	0.13

Laboratory Analysis Report

CLIENT

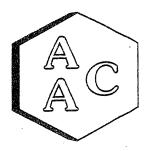
: Sacramento Metropolitan AQMD : 201561

PROJECT NO

MATRIX

: AIR : PPB (v/v) DATE RECEIVED

: 08/26/2020


DATE REPORTED

: 09/21/2020

HYDROCARBONS (C2-C12) SPECIATED

Client ID		1236-Station				1190-Sump	50	Sample	
AACID		201561-118		Sample		201561-118		Reporting	Method
Date Sampled		08/19/202		Reporting	08/19/2020			1	Reporting
Date Analyzed		09/15/2020	0	Limit (SRL)		09/15/202	0	Limit	Limit
Can Dilution Factor		8.32		(MRLxDF's)		4.45		(SRL)	(MRL)
	Result	Qualifier	Analysis DF	(Result	Qualifier	Analysis DF	(MRLxDF's)	(WIKL)
Toluene	<srl< td=""><td>U</td><td>1.0</td><td>0.72</td><td>3.11</td><td></td><td>1.0</td><td>0.64</td><td>0.14</td></srl<>	U	1.0	0.72	3.11		1.0	0.64	0.14
2-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	U	1.0	0.56	0.13
3-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>Ü</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>Ü</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	Ü	1.0	0.56	0.13
n-Octane	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	U	1.0	0.56	0.13
Ethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	U	1.0	0.56	0.13
m/p-Xylenes	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	U	1.0	0.56	0.13
Styrene	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	U	1.0	0.56	0.13
o-Xylene	<srl< td=""><td>U</td><td>1.0</td><td>0.63</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<></td></srl<>	U	1.0	0.63	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.13</td></srl<>	U	1.0	0.56	0.13
Nonane	<srl< td=""><td>U.</td><td>1.0</td><td>0.56</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<></td></srl<>	U.	1.0	0.56	<srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	U	1.0	0.49	0.11
Isopropylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.56	<srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	U	1.0	0.49	0.11
n-Propylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.56	<srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	U	1.0	0.49	0.11
m-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.56	<srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	U	1.0	0.49	0.11
p-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.56	<srl< td=""><td>U</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	U	1.0	0.49	0.11
1,3,5-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.80</td><td></td><td>· 1.0</td><td>0.49</td><td>0.11</td></srl<>	U	1.0	0.56	0.80		· 1.0	0.49	0.11
o-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td><srl< td=""><td>U.</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.56	<srl< td=""><td>U.</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	U.	1.0	0.49	0.11
1,2,4-Trimethylbenzene	_ <srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td><srl< td=""><td>Ū</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<></td></srl<>	U	1.0	0.56	<srl< td=""><td>Ū</td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	Ū	1.0	0.49	0.11
n-Decane	<srl< td=""><td>U</td><td>1.0</td><td>0.50</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.44</td><td>0.10</td></srl<></td></srl<>	U	1.0	0.50	<srl< td=""><td>U</td><td>1.0</td><td>0.44</td><td>0.10</td></srl<>	U	1.0	0.44	0.10
1,2,3-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.56</td><td>0.53</td><td></td><td>1.0</td><td>0.49</td><td>0.11</td></srl<>	U	1.0	0.56	0.53		1.0	0.49	0.11
m-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.50</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.44</td><td>0.10</td></srl<></td></srl<>	U	1.0	0.50	<srl< td=""><td>U</td><td>1.0</td><td>0.44</td><td>0.10</td></srl<>	U	1.0	0.44	0.10
p-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.50</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.44</td><td>0.10</td></srl<></td></srl<>	U	1.0	0.50	<srl< td=""><td>U</td><td>1.0</td><td>0.44</td><td>0.10</td></srl<>	U	1.0	0.44	0.10
n-Undecane	<srl< td=""><td>U</td><td>1.0</td><td>0.46</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.40</td><td>0.09</td></srl<></td></srl<>	U	1.0	0.46	<srl< td=""><td>U</td><td>1.0</td><td>0.40</td><td>0.09</td></srl<>	U	1.0	0.40	0.09
n-Dodecane II - Compound was analyzed for but was not	<srl< td=""><td>U</td><td>1.0</td><td>0.42</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.37</td><td>0.08</td></srl<></td></srl<>	U	1.0	0.42	<srl< td=""><td>U</td><td>1.0</td><td>0.37</td><td>0.08</td></srl<>	U	1.0	0.37	0.08

U - Compound was analyzed for, but was not detected at or above the SRL.

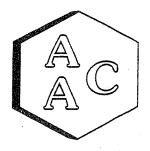
Laboratory Analysis Report

CLIENT PROJECT NO

: Sacramento Metropolitan AQMD : 201561

MATRIX UNITS

: AIR : ug/m3 DATE RECEIVED


: 08/26/2020

DATE REPORTED

: 09/21/2020

HYDROCARBONS (C2-C12) SPECIATED

Client ID AAC ID		1236-Station 201561-118		Sample		1190-Sump 201561-118		Sample	Method
Date Sampled		08/19/202		Reporting	08/19/2020			Reporting	Reporting
Date Analyzed		09/15/202	0	Limit (SRL)				Limit	Limit
Can Dilution Factor		8.32		(MRLxDF's)				(SRL)	(MRL)
	Result	Qualifier	Analysis DF	(**************************************	Result	Qualifier	Analysis DF	(MRLxDF's)	(1,2242)
Ethylene	3.61		1.0	2.88	4.06		1.0	2.55	0.57
Acetylene	<srl< td=""><td>U</td><td>1.0</td><td>2.68</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.37</td><td>0.53</td></srl<></td></srl<>	U	1.0	2.68	<srl< td=""><td>U</td><td>1.0</td><td>2.37</td><td>0.53</td></srl<>	U	1.0	2.37	0.53
Ethane	5.57		1.0	3.09	6.97		1.0	2.73	0.61
Propylene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
Propane	10.7		1.0	3.02	9.60		1.0	2.67	0.60
Isobutane	<srl< td=""><td>U</td><td>1.0</td><td>2.99</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.64</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.99	<srl< td=""><td>U</td><td>1.0</td><td>2.64</td><td>0.59</td></srl<>	U	1.0	2.64	0.59
1-Butene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
n-Butane	<srl< td=""><td>U</td><td>1.0</td><td>2.99</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.64</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.99	<srl< td=""><td>U</td><td>1.0</td><td>2.64</td><td>0.59</td></srl<>	U	1.0	2.64	0.59
trans-2-Butene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
cis-2-Butene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
Isopentane	4.48		1.0	2.97	7.43		1.0	2.62	0.59
1-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
n-Pentane	<srl< td=""><td>U</td><td>1.0</td><td>2.97</td><td>4.57</td><td></td><td>1.0</td><td>2.62</td><td>0.59</td></srl<>	U	1.0	2.97	4.57		1.0	2.62	0.59
Isoprene	<srl< td=""><td>U</td><td>1.0</td><td>2.80</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.48</td><td>0.56</td></srl<></td></srl<>	U	1.0	2.80	<srl< td=""><td>U</td><td>1.0</td><td>2.48</td><td>0.56</td></srl<>	U	1.0	2.48	0.56
trans-2-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
cis-2-Pentene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
2,2-Dimethylbutane	<srl< td=""><td>U</td><td>1.0</td><td>2.95</td><td><srl< td=""><td>Ü</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.95	<srl< td=""><td>Ü</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<>	Ü	1.0	2.61	0.59
Cyclopentane	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
2,3-Dimethylbutane	<srl< td=""><td>U</td><td>1.0</td><td>2.95</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.95	<srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<>	U	1.0	2.61	0.59
2-Methylpentane	<srl< td=""><td>U</td><td>1.0</td><td>2.95</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.95	<srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<>	U	1.0	2.61	0.59
3-Methylpentane	<srl< td=""><td>U</td><td>1.0</td><td>2.95</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.95	<srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<>	U	1.0	2.61	0.59
1-Hexene	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
n-Hexane	<srl< td=""><td>U</td><td>1.0</td><td>2.95</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.95	<srl< td=""><td>U</td><td>1.0</td><td>2.61</td><td>0.59</td></srl<>	U	1.0	2.61	0.59
Methylcyclopentane	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
2,4-Dimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<>	U	1.0	2.60	0.59
Benzene	<srl< td=""><td>U</td><td>1.0</td><td>2.68</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.37</td><td>0.53</td></srl<></td></srl<>	U	1.0	2.68	<srl< td=""><td>U</td><td>1.0</td><td>2.37</td><td>0.53</td></srl<>	U	1.0	2.37	0.53
Cyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
2-Methylhexane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<>	U	1.0	2.60	0.59
2,3-Dimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<>	U	1.0	2.60	0.59
3-Methylhexane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<>	U	1.0	2.60	0.59
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<>	U	1.0	2.60	0.58
n-Heptane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.59</td></srl<>	U	1.0	2.60	0.59
Methylcyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>2.88</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<></td></srl<>	U	1.0	2.88	<srl< td=""><td>U</td><td>1.0</td><td>2.55</td><td>0.57</td></srl<>	U	1.0	2.55	0.57
2,3,4-Trimethylpentane	6.31	-	1.0	2.94	10.3		1.0	2.60	0.58

Laboratory Analysis Report

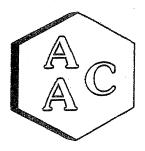
CLIENT PROJECT NO : Sacramento Metropolitan AQMD

: 201561

MATRIX UNITS : AIR : ug/m3 DATE RECEIVED

: 08/26/2020

DATE REPORTED


: 09/21/2020

HYDROCARBONS (C2-C12) SPECIATED

Client ID AAC ID		1236-Station 201561-118	56	Sample		1190-Sump 201561-118	357	Sample Reporting	Method
Date Sampled		08/19/202		Reporting	08/19/2020			Limit	Reporting
Date Analyzed		09/15/202	0	Limit (SRL)		09/15/202	0		Limit
Can Dilution Factor		8.32	X .	(MRLxDF's)		4.45		(SRL)	(MRL)
	Result	Qualifier	Analysis DF	<u> </u>	Result	Qualifier	Analysis DF	(MRLxDF's)	
Toluene	<srl< td=""><td>U</td><td>1.0</td><td>2.71</td><td>11.7</td><td></td><td>1.0</td><td>2.39</td><td>0.54</td></srl<>	U	1.0	2.71	11.7		1.0	2.39	0.54
2-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<>	U	1.0	2.60	0.58
3-Methylheptane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<>	U	1.0	2.60	0.58
n-Octane	<srl< td=""><td>U</td><td>1.0</td><td>2.94</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<></td></srl<>	U	1.0	2.94	<srl< td=""><td>U</td><td>1.0</td><td>2.60</td><td>0.58</td></srl<>	U	1.0	2.60	0.58
Ethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>2.73</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.41</td><td>0.54</td></srl<></td></srl<>	U	1.0	2.73	<srl< td=""><td>U</td><td>1.0</td><td>2.41</td><td>0.54</td></srl<>	U	1.0	2.41	0.54
m/p-Xylenes	<srl< td=""><td>U</td><td>1.0</td><td>2.73</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.41</td><td>0.54</td></srl<></td></srl<>	U	1.0	2.73	<srl< td=""><td>U</td><td>1.0</td><td>2.41</td><td>0.54</td></srl<>	U	1.0	2.41	0.54
Styrene	<srl< td=""><td>U</td><td>1.0</td><td>2.68</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.37</td><td>0.53</td></srl<></td></srl<>	U	1.0	2.68	<srl< td=""><td>U</td><td>1.0</td><td>2.37</td><td>0.53</td></srl<>	U	1.0	2.37	0.53
o-Xylene	<srl< td=""><td>U</td><td>1.0</td><td>2.73</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.41</td><td>0.54</td></srl<></td></srl<>	U	1.0	2.73	<srl< td=""><td>U</td><td>1.0</td><td>2.41</td><td>0.54</td></srl<>	U	1.0	2.41	0.54
Nonane	<srl< td=""><td>Ū</td><td>1.0</td><td>2.93</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.59</td><td>0.58</td></srl<></td></srl<>	Ū	1.0	2.93	<srl< td=""><td>U</td><td>1.0</td><td>2.59</td><td>0.58</td></srl<>	U	1.0	2.59	0.58
Isopropylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>2.75</td><td><srl td="" ·<=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl></td></srl<>	U	1.0	2.75	<srl td="" ·<=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl>	U	1.0	2.43	0.55
n-Propylbenzene	<srl< td=""><td>Ū</td><td>1.0</td><td>2.75</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<></td></srl<>	Ū	1.0	2.75	<srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<>	U	1.0	2.43	0.55
m-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>2.75</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<></td></srl<>	U	1.0	2.75	<srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<>	U	1.0	2.43	0.55
p-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>2.75</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<></td></srl<>	U	1.0	2.75	<srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<>	U	1.0	2.43	0.55
1,3,5-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>2.75</td><td>3.93</td><td></td><td>1.0</td><td>2.43</td><td>0.55</td></srl<>	U	1.0	2.75	3.93		1.0	2.43	0.55
o-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>2.75</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<></td></srl<>	U	1.0	2.75	<srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<>	U	1.0	2.43	0.55
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>2.75</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<></td></srl<>	U	1.0	2.75	<srl< td=""><td>U</td><td>1.0</td><td>2.43</td><td>0.55</td></srl<>	U	1.0	2.43	0.55
n-Decane	<srl< td=""><td>U</td><td>1.0</td><td>2.93</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.59</td><td>0.58</td></srl<></td></srl<>	U	1.0	2.93	<srl< td=""><td>U</td><td>1.0</td><td>2.59</td><td>0.58</td></srl<>	U	1.0	2.59	0.58
1,2,3-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>2.75</td><td>2.62</td><td></td><td>1.0</td><td>2.43</td><td>0.55</td></srl<>	U	1.0	2.75	2.62		1.0	2.43	0.55
m-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>2.76</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.44</td><td>0.55</td></srl<></td></srl<>	U	1.0	2.76	<srl< td=""><td>U</td><td>1.0</td><td>2.44</td><td>0.55</td></srl<>	U	1.0	2.44	0.55
p-Diethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>2.76</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.44</td><td>0.55</td></srl<></td></srl<>	U	1.0	2.76	<srl< td=""><td>U</td><td>1.0</td><td>2.44</td><td>0.55</td></srl<>	U	1.0	2.44	0.55
n-Undecane	<srl< td=""><td>U</td><td>1.0</td><td>2.92</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.58</td><td>0.58</td></srl<></td></srl<>	U	1.0	2.92	<srl< td=""><td>U</td><td>1.0</td><td>2.58</td><td>0.58</td></srl<>	U	1.0	2.58	0.58
n-Dodecane	<srl< td=""><td>U</td><td>1.0</td><td>2.92</td><td><srl< td=""><td>U</td><td>1.0</td><td>2.58</td><td>0.58</td></srl<></td></srl<>	U	1.0	2.92	<srl< td=""><td>U</td><td>1.0</td><td>2.58</td><td>0.58</td></srl<>	U	1.0	2.58	0.58

U - Compound was analyzed for, but was not detected at or above the SRL.

Sucha Parmar, Ph.D Technical Director

Quality Control/Quality Assurance Report PAMS Calibration Verification Analysis

Analysis Date

: 09/15/2020

Analyst

: RB

Instrument ID: MS-01

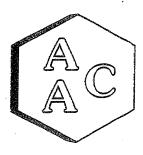
Standard ID: PS022020-01

Calibration Date: 06/01/2020

Continuing Calibration Verification

Analyte	xRF	daily RF	%RPD*
Propane	708	728	2.8

^{* %}RPD must be < 10%

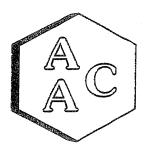

Laboratory Control Spike Recovery

Analyte	Sample	Spike	Spike	Spike Dup	Spike %	Spike Dup	RPD***
	Conc.	Added	Res	Res	Rec **	% Rec **	%
Propane	0.0	4.20	4.32	4.24	102.9	101.0	1.9

^{**} Must be 80-120%

Sucha Parmar, Ph.D.

^{***} Must be < 25%



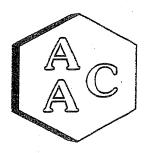
Quality Control/Quality Assurance Report PAMS Method Blank Analysis

Matrix Units : Air : ppbC Analysis Date: 09/15/2020

Report Date: 09/15/2020

Client ID	Method Blank	PQL
AAC ID	PAMS BLANK	rQL
Ethylene	<pql< td=""><td>1.0</td></pql<>	1.0
Acetylene	<pql< td=""><td>1.0</td></pql<>	1.0
Ethane	<pql< td=""><td>1.0</td></pql<>	1.0
Propylene	<pql< td=""><td>1.0</td></pql<>	1.0
Propane	<pql< td=""><td>1.0</td></pql<>	1.0
Isobutane	<pql< td=""><td>1.0</td></pql<>	1.0
1-Butene	<pql< td=""><td>1.0</td></pql<>	1.0
n-Butane	<pql< td=""><td>1.0</td></pql<>	1.0
trans-2-Butene	<pql< td=""><td>1.0</td></pql<>	1.0
cis-2-Butene	<pql< td=""><td>1.0</td></pql<>	1.0
Isopentane	<pql< td=""><td>1.0</td></pql<>	1.0
1-Pentene	<pql< td=""><td>1.0</td></pql<>	1.0
n-Pentane	<pql< td=""><td>1.0</td></pql<>	1.0
Isoprene	<pql< td=""><td>1.0</td></pql<>	1.0
trans-2-Pentene	<pql< td=""><td>1.0</td></pql<>	1.0
cis-2-Pentene	<pql< td=""><td>1.0</td></pql<>	1.0
2,2-Dimethylbutane	<pql< td=""><td>1.0</td></pql<>	1.0
Cyclopentane	<pql< td=""><td>1.0</td></pql<>	1.0
2,3-Dimethylbutane	<pql< td=""><td>1.0</td></pql<>	1.0
2-Methylpentane	<pql< td=""><td>1.0</td></pql<>	1.0
3-Methylpentane	<pql< td=""><td>1.0</td></pql<>	1.0
1-Hexene	<pql< td=""><td>1.0</td></pql<>	1.0
n-Hexane	<pql< td=""><td>1.0</td></pql<>	1.0
Methylcyclopentane	<pql< td=""><td>1.0</td></pql<>	1.0
2,4-Dimethylpentane	<pql< td=""><td>1.0</td></pql<>	1.0
Benzene	<pql< td=""><td>1.0</td></pql<>	1.0
Cyclohexane	<pql< td=""><td>1.0</td></pql<>	1.0
2-Methylhexane	<pql< td=""><td>1.0</td></pql<>	1.0

Quality Control/Quality Assurance Report PAMS Method Blank Analysis


Matrix Units : Air : ppbC Analysis Date: 09/15/2020

Report Date: 09/15/2020

Client ID	Method Blank	PQL
AAC ID	PAMS BLANK	
2,3-Dimethylpentane	<pql< td=""><td>1.0</td></pql<>	1.0
3-Methylhexane	<pql< td=""><td>1.0</td></pql<>	1.0
2,2,4-Trimethylpentane	<pql< td=""><td>1.0</td></pql<>	1.0
n-Heptane	<pql< td=""><td>1.0</td></pql<>	1.0
Methylcyclohexane	<pql< td=""><td>1.0</td></pql<>	1.0
2,3,4-Trimethylpentane	<pql< td=""><td>1.0</td></pql<>	1.0
Toluene	<pql< td=""><td>1.0</td></pql<>	1.0
2-Methylheptane	<pql< td=""><td>1.0</td></pql<>	1.0
3-Methylheptane	<pql< td=""><td>1.0</td></pql<>	1.0
n-Octane	<pql< td=""><td>1.0</td></pql<>	1.0
Ethylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
m/p-Xylenes	<pql< td=""><td>1.0</td></pql<>	1.0
Styrene	<pql< td=""><td>1.0</td></pql<>	1.0
o-Xylene	<pql< td=""><td>1.0</td></pql<>	1.0
Nonane	<pql< td=""><td>1.0</td></pql<>	1.0
Isopropylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
n-Propylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
m-Ethyltoluene	<pql< td=""><td>1.0</td></pql<>	1.0
p-Ethyltoluene	<pql< td=""><td>1.0</td></pql<>	1.0
1,3,5-Trimethylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
o-Ethyltoluene	<pql< td=""><td>1.0</td></pql<>	1.0
1,2,4-Trimethylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
n-Decane	<pql< td=""><td>1.0</td></pql<>	1.0
1,2,3-Trimethylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
m-Diethylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
p-Diethylbenzene	<pql< td=""><td>1.0</td></pql<>	1.0
n-Undecane	<pql< td=""><td>1.0</td></pql<>	1.0
n-Dodecane	<pql< td=""><td>1.0</td></pql<>	1.0
TNMHC (ppbC)	<pql< td=""><td>20</td></pql<>	20

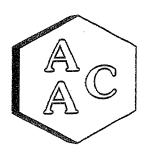
Sucha Parmar, Ph.D. Technical Director

Quality Control/Quality Assurance Report PAMS Duplicate Analysis

AAC ID

: 201575-11939

Matrix


: Air

Analysis Date: 09/15/2020

Report Date: 09/15/2020

Units: ppbC

Analyte	Sample Analysis	Sample Duplicate Analysis	%RPD
Ethylene	5.80	5.80	0.0
Acetylene	3.13	3.17	1.3
Ethane	9.44	9.42	0.2
Propylene	<pql< td=""><td>1.00</td><td>0.0</td></pql<>	1.00	0.0
Propane	4.12	4.10	0.5
Isobutane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
1-Butene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Butane	2.50	2.49	0.4
trans-2-Butene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
cis-2-Butene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Isopentane	3.55	3.59	1.1
1-Pentene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Pentane	1.90	1.91	0.5
Isoprene	2.25	2.21	1.8
trans-2-Pentene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
cis-2-Pentene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
2,2-Dimethylbutane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Cyclopentane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
2,3-Dimethylbutane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
2-Methylpentane	1.66	1.70	2.4
3-Methylpentane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
1-Hexene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Hexane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Methylcyclopentane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
2,4-Dimethylpentane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Benzene	3.86	3.89	0.8
Cyclohexane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
2-Methylhexane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0

Quality Control/Quality Assurance Report PAMS Duplicate Analysis

AAC ID

: 201575-11939

Matrix

: Air

Analysis Date: 09/15/2020

Report Date: 09/15/2020

Units: ppbC

Analyte	Sample Analysis	Sample Duplicate Analysis	%RPD
2,3-Dimethylpentane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
3-Methylhexane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
2,2,4-Trimethylpentane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Heptane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Methylcyclohexane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
2,3,4-Trimethylpentane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Toluene	2.20	2.20	0.0
2-Methylheptane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
3-Methylheptane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Octane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Ethylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
m/p-Xylenes	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Styrene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
o-Xylene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Nonane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Isopropylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Propylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
m-Ethyltoluene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
p-Ethyltoluene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
1,3,5-Trimethylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
o-Ethyltoluene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
1,2,4-Trimethylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Decane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
1,2,3-Trimethylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
m-Diethylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
p-Diethylbenzene	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Undecane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
n-Dodecane	<pql< td=""><td><pql< td=""><td>0.0</td></pql<></td></pql<>	<pql< td=""><td>0.0</td></pql<>	0.0
Total PAMS (ppbC)	50.6	50.4	0.4
TNMHC (ppbc)	190	195	2.6

Sucha Parmar, Ph.D.

ATMOSPHERIC ANALYSIS & CONSULTING, INC.
1534 Eastman Avenue, Suite A
Ventura, California 93003
Phone (805) 650-1642 Fax (805) 650-1644
E-mail: info@aaclab.com

AAC Project No. 20156

Page _____ of

CHAIN OF CUSTODY/ ANALYSIS REQUEST FORM

Conduct Rucks	Received by (signature):	1235	8/26/20		Print Name:		(signature):	kelinquished by (signature):
Print Name	Received by (signature):	12:00	Date/Time 8124/h0	=	Print Name: Frank Wulff	<u>(a)</u>	y (Signatu	Relinquished by (Signature):
		X	Silonite1					
		X	Silonite 1					
		X	Silonite 1					
		X	Silonite 1					
Special Instructions/remarks:		X	Silonite1					
_X		X	Silonite1					
		X	Silonite 1					
Turnaround Time		X	Silonite1					
P.O. # Cite contract #		X	Silonite1	1190-Sump50		00:00- 24:00	8/19/20	11857
Attn: Acct Payable		X	Silonite 1	1236-Station56		00:00- 24:00	8/19/20	11856
		X	Silonite1	1279-VFW		00:00- 24:00	8/19/20	11855
Send invoice to:		X	Silonite1	1229-ImpactCh		00:00- 24:00	8/19/20	11854
Fax#: 710-6/4-4666		T Pr	Type/No. of Containers	Client Sample ID/Description	Sample Type	Time Sampled	Date Sampled	AAC Sample No.
Levi Ford		rotoco		J. B. Sampling	Sampler's Signature	е)	(Print Name	Sampler's Name (Print Name) Frank Wulff
		ol l		Project Number Contract 2019-0000079	Project Number Contract 201		it Name)	Project Mgr (Print Name) Levi Ford
Send report:	Analysis Requested			Project Name AB617 VOC Analysis	Project Name AB617 VOC	n AQMD	letropolita	Client Name Sacramento Metropolitan AQMD

Too 4x cus

Technician	R.	Pas 2	-	

Site	Canister #	Setup Date	Start Date	Start Time (00:00 PST)	Canister Vacuum	Stop Date	Stop Time (00:00 PST)	Canister Pressure	Removal Date
Sump 50									
Station 56									
VFW Post	00 1161	8-17-20	8/19	0 ()=0 ()	-31.0	8/20	00:00	-0-5	8-20-20
Impact Church									
Florin Elementary									
CRC									

Comments:			
_			

Technician R. Par

Site	Canister #	Setup Date	Start Date	Start Time (00:00 PST)	Canister Vacuum	Stop Date	Stop Time (00:00 PST)	Canister Pressure	Removal Date
Sump 50									
Station 56									
VFW Post									
Impact Church	001279	8/17	8/19	ითქია	-29.6	8/20	00100	-0.2	8/20
Florin Elementary									
CRC									

Comments:			

Technician_	RUDY		202	_0					
Site	Canister #	Setup Date	Start Date	Start Time (00:00 PST)	Canister Vacuum	Stop Date	Stop Time (00:00 PST)	Canister Pressure ▼ (2-(2	Removal Date
Sump 50									,
Station 56	952100	8/13	8/19	00:00	-29.6	8 20	∞ .∞.	3.5 psi	8/20/20
VFW Post									
Impact Church						·			
Florin Elementary									
CRC									
Comments:						1			
		. .							roofs and a second seco

Technician Sasal

Comments:

Site	Can #	Setup Date	Start Date	5 MIN Leak Check Passed ?	Start Time (00:00 PST)	Start Vacuum (23-33 inHg)	Stop Date	Stop Time (00:00 PST)	End Vacuum (2-12 inHG)	Removal Date
Sump 50	1190	8/13/2	8/19/2	7	0000	-315	8/20/20	0000	-20	8/24/20
Station 56										
VFW Post										
Impact Church										
Florin Elementary										
CRC										