

| Minor Source<br>nination Number<br>er: 25127<br>escription:<br>ing/Capacity:<br>ocation: | ə <b>r</b> : 141                                                                                                                                                                                                                                                                                                                                                                                        | BACT Determination Date:<br>Information<br><b>Expires - 9/3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OFFEE ROASTI<br>9/4/2019<br><b>8/9021</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| er: 25127<br>escription:<br>ing/Capacity:                                                | Equipment<br>COFFEE ROASTER<br>< 110,000 Btu/hr<br>VINTAGE PRODUCTIO<br>2827 S ST                                                                                                                                                                                                                                                                                                                       | Information<br>Expires - 9/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| escription:<br>ing/Capacity:                                                             | COFFEE ROASTER<br>< 110,000 Btu/hr<br>VINTAGE PRODUCTIC<br>2827 S ST                                                                                                                                                                                                                                                                                                                                    | <b>Expires</b> - 9/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/9091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| escription:<br>ing/Capacity:                                                             | < 110,000 Btu/hr<br>VINTAGE PRODUCTIC<br>2827 S ST                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/9091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ing/Capacity:                                                                            | < 110,000 Btu/hr<br>VINTAGE PRODUCTIC<br>2827 S ST                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • • •                                                                                    | VINTAGE PRODUCTIO<br>2827 S ST                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ocation:                                                                                 | 2827 S ST                                                                                                                                                                                                                                                                                                                                                                                               | ON CALIFORNIA LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | SACRAMENTO, CA                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | BACT Determina                                                                                                                                                                                                                                                                                                                                                                                          | tion Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tandard:                                                                                 | ≥ 90% control efficiency                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| echnology                                                                                | Afterburner (0.3 second retention                                                                                                                                                                                                                                                                                                                                                                       | on time at 1200 °F) or equivalent technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| escription:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| asis:                                                                                    | Achieved in Practice                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tandard:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| echnology                                                                                | Natural gas fuel                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| escription:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| asis:                                                                                    | Achieved in Practice                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tandard:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| echnology                                                                                | Natural gas fuel                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| escription:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | Achieved in Practice                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | Natural gas fuel with cyclone ar technology                                                                                                                                                                                                                                                                                                                                                             | nd afterburner (0.3 second retention time at 1200 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F) or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                          | Achieved in Practice                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | Cyclone and natural gas fuel                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | -, -, -, -, -, -, -, -, -, -, -, -, -, -                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                                                                                        | Achieved in Practice                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tandard:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| echnology                                                                                | Natural gas fuel and good com                                                                                                                                                                                                                                                                                                                                                                           | oustion practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| escription:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| asis:                                                                                    | Achieved in Practice                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tandard:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| echnology                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| asis:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | andard:<br>echnology<br>escription:<br>asis:<br>andard:<br>echnology<br>escription:<br>asis:<br>andard:<br>echnology<br>escription:<br>asis:<br>andard:<br>echnology<br>escription:<br>asis:<br>andard:<br>echnology<br>escription:<br>asis:<br>andard:<br>echnology<br>escription:<br>asis:<br>andard:<br>echnology<br>escription:<br>asis:<br>andard:<br>echnology<br>escription:<br>asis:<br>andard: | andard:       Natural gas fuel         achnology       Natural gas fuel         asis:       Achieved in Practice         andard:       Natural gas fuel         asis:       Achieved in Practice         andard:       Natural gas fuel         asis:       Achieved in Practice         andard:       Natural gas fuel with cyclone and technology         asis:       Achieved in Practice         andard:       Natural gas fuel with cyclone and technology         asis:       Achieved in Practice         andard:       Cyclone and natural gas fuel         asis:       Achieved in Practice         andard:       Cyclone and natural gas fuel         asis:       Achieved in Practice         andard:       Achieved in Practice         asis:       Achieved in Practice         andard:       Achieved in Practice         andard:       Achieved in Practice         asis:       Achieved in Practice         andard:       Achieved in Practice         andard:       Achieved in Practice         asis:       Achieved in Practice         asis:       Achieved in Practice         andard:       Achieved in Practice         asis:       Achieved in Prac | sandard:       Natural gas fuel         achnology       Natural gas fuel         asis:       Achieved in Practice         andard:       Natural gas fuel         achnology       Natural gas fuel         asis:       Achieved in Practice         andard:       Natural gas fuel         asis:       Achieved in Practice         andard:       Natural gas fuel with cyclone and afterburner (0.3 second retention time at 1200 ° technology         escription:       Natural gas fuel with cyclone and afterburner (0.3 second retention time at 1200 ° technology         escription:       Achieved in Practice         andard:       Cyclone and natural gas fuel         escription:       Achieved in Practice         andard:       Cyclone and natural gas fuel         escription:       Achieved in Practice         andard:       Achieved in Practice         andard:       Achieved in Practice         asis:       Achieved in Practice |

# Expires - 9/3/2021

| CATEGOR                                  | Y:                                                                                                           | CO                                                                | FFEE ROASTER                                                                                                                                        |                      |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| BACT Size:                               | Minor Source                                                                                                 | BACT                                                              |                                                                                                                                                     | COFFEE ROASTE        |
| BACT Dete                                | ermination Numb                                                                                              | <b>er:</b> 184                                                    | BACT Determination Date:                                                                                                                            | 9/4/2019             |
|                                          |                                                                                                              | Equipmer                                                          | nt Information                                                                                                                                      |                      |
| Unit Size/F                              | mber: N/A<br>t Description:<br>Rating/Capacity:<br>t Location:                                               | Generic BACT Determina<br>COFFEE ROASTER<br>110,000 Btu/hr to 3.5 |                                                                                                                                                     | 3/ <b>2021</b>       |
|                                          |                                                                                                              | BACT Determin                                                     | nation Information                                                                                                                                  |                      |
| ROCs                                     | Standard:                                                                                                    | ≥ 90% control efficiency                                          |                                                                                                                                                     |                      |
| RUUS                                     | Technology<br>Description:                                                                                   | afterburner (0.3 second reten                                     | tion time at ≥1400 °F) or equivalent technology                                                                                                     |                      |
|                                          | Basis:                                                                                                       | Achieved in Practice                                              |                                                                                                                                                     |                      |
| NOx                                      | Standard:<br>Technology                                                                                      | 40 or 60 ppm NOx at 3% O2,<br>For units ≥ 325,000 BTU/hr: I       | see comments<br>Low NOx burner, see comments for details                                                                                            |                      |
|                                          | Description:<br>Basis:                                                                                       | Achieved in Practice                                              |                                                                                                                                                     |                      |
|                                          |                                                                                                              |                                                                   |                                                                                                                                                     |                      |
| Technology Natural gas fuel Description: |                                                                                                              |                                                                   |                                                                                                                                                     |                      |
|                                          | Basis:<br>Standard:                                                                                          | Achieved in Practice                                              |                                                                                                                                                     |                      |
| PM10                                     | Technology<br>Description:                                                                                   | Natural gas with cyclone and technology                           | afterburner (0.3 second retention time at 1400 $^\circ \mathrm{F})$                                                                                 | or equivalent        |
|                                          | Basis:                                                                                                       | Achieved in Practice                                              |                                                                                                                                                     |                      |
| PM2.5                                    |                                                                                                              |                                                                   |                                                                                                                                                     |                      |
|                                          | Basis:                                                                                                       | Achieved in Practice                                              |                                                                                                                                                     |                      |
| CO                                       | Standard:     Technology       Description:     Natural gas fuel and good combustion practices               |                                                                   |                                                                                                                                                     |                      |
|                                          | Basis:                                                                                                       | Achieved in Practice                                              |                                                                                                                                                     |                      |
| LEAD                                     | Standard:                                                                                                    |                                                                   |                                                                                                                                                     |                      |
|                                          | Technology<br>Description:<br>Basis:                                                                         |                                                                   |                                                                                                                                                     |                      |
| Comments                                 | <ul> <li>BACT for NOx:</li> <li>1.40 ppm NOx at 3<sup>4</sup><br/>roaster burners ≥ 5<sup>6</sup></li> </ul> | 00 °F<br>% O2 or 0.073 lb/MMBtu for afte                          | aster burners < 500 °F, 60 ppm NOx at 3% O2 or 0.0<br>erburners, thermal oxidizers, catalytic oxidizers, and<br>b) 874-4863 email: jquok@airquality | l vapor incinerators |

777 12th Street, Third Floor

SACRAMENTO METROPOLITAN

Sacramento, CA 95814





### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

|                                     | DETERMINATION NO .:                    | 141 & 184              |
|-------------------------------------|----------------------------------------|------------------------|
|                                     | DATE:                                  | September 4, 2019      |
|                                     | ENGINEER:                              | Jeffrey Quok           |
|                                     |                                        |                        |
| Category/General Equip Description: | Coffee Roaster                         |                        |
|                                     | Coffee Roaster < 110,00                | 0 Btu/hr (BACT #141)   |
| Equipment Specific Description:     | Coffee Roaster 110,000<br>(BACT # 184) | Btu/hr to 3.5 MMbtu/hr |
| Equipment Size/Rating:              | Minor Source BACT                      |                        |
| Previous BACT Det. No.:             | 100                                    |                        |

This BACT/T-BACT determination will update Determination #100 for Coffee Roasters.

This BACT/T-BACT was determined under the project for A/C 25127 (Temple Coffee).

### **BACT ANALYSIS**

### A: ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT for coffee roasters by the following air pollution control districts and agencies:

| District/Agency                                  | Best Available Control Technology (BACT)/Requirements |                                    |  |  |
|--------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|
| BACT<br>Source: EPA RACT/BACT/LAER Clearinghouse |                                                       |                                    |  |  |
|                                                  | Coffee                                                | Roaster                            |  |  |
|                                                  | VOC                                                   | N/A – No BACT determinations found |  |  |
|                                                  | NOx                                                   | N/A – No BACT determinations found |  |  |
| US EPA                                           | SOx                                                   | N/A – No BACT determinations found |  |  |
|                                                  | PM10                                                  | N/A – No BACT determinations found |  |  |
|                                                  | PM2.5                                                 | N/A – No BACT determinations found |  |  |
|                                                  | CO                                                    | N/A – No BACT determinations found |  |  |
|                                                  |                                                       | ·                                  |  |  |

| District/Agency | Best Available Control Technology (BACT)/Requirements                                                                                                |                                                                             |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| US EPA          | <b><u>T-BACT</u></b><br>There are no T-BACT standards published in the clearinghouse for this category.<br><b><u>RULE REQUIREMENTS</u></b> :<br>None |                                                                             |  |  |
|                 | BACT<br>Source: ARB BACT Clearinghouse                                                                                                               |                                                                             |  |  |
|                 | Coffee                                                                                                                                               | Roaster                                                                     |  |  |
|                 | VOC                                                                                                                                                  | N/A – No BACT determinations found                                          |  |  |
|                 | NOx                                                                                                                                                  | N/A – No BACT determinations found                                          |  |  |
|                 | SOx                                                                                                                                                  | N/A – No BACT determinations found                                          |  |  |
|                 | PM10                                                                                                                                                 | N/A – No BACT determinations found                                          |  |  |
| ARB             | PM2.5                                                                                                                                                | N/A – No BACT determinations found                                          |  |  |
|                 | СО                                                                                                                                                   | N/A – No BACT determinations found                                          |  |  |
|                 | RULE REQUIREMENTS:<br>None<br>BACT                                                                                                                   |                                                                             |  |  |
|                 | Source: SMAQMD BACT Clearinghouse (1/30/15)                                                                                                          |                                                                             |  |  |
|                 | Coffee F                                                                                                                                             |                                                                             |  |  |
|                 | VOC                                                                                                                                                  | ≥ 90% control efficiency                                                    |  |  |
|                 | NOx                                                                                                                                                  | Natural Gas Fuel                                                            |  |  |
|                 | SOx                                                                                                                                                  | Natural Gas Fuel                                                            |  |  |
|                 | PM10                                                                                                                                                 | Cyclone and Natural Gas Fuel                                                |  |  |
| SMAQMD          | PM2.5<br>CO                                                                                                                                          | Cyclone and Natural Gas Fuel Natural gas fuel and good combustion practices |  |  |
|                 | T-BACT<br>There ar<br>category.<br>RULE RE<br>Rule 419<br>This Rule<br>total rated<br>major sta<br>cooking u                                         | e no T-BACT standards published in the clearinghouse for this               |  |  |

| District/Agency | Best Available Control Technology (BACT)/Requirements                                                                                                                                                                                                              |                                                                                 |                                    |                                     |                                                                   |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------------------------------------|--|--|
|                 | The requirements of this rule do not apply to combustion equipment where its primary function is to operate as an air pollution control device including, but not limited to, afterburners, catalytic oxidizers, flares, thermal oxidizers, or vapor incinerators. |                                                                                 |                                    |                                     |                                                                   |  |  |
| SMAQMD          |                                                                                                                                                                                                                                                                    | TA<br>Emission Limits Exp                                                       | BLE 2: Cooki<br>pressed As Pl      |                                     | cted to 3% O <sub>2</sub>                                         |  |  |
|                 | Equipment Category                                                                                                                                                                                                                                                 |                                                                                 | NOx L<br>ppmv, cor<br>3%<br>(Ib/MM | imit<br>rected to<br>O <sub>2</sub> | CO Limit<br>ppmv, corrected to<br>3% O <sub>2</sub><br>(Ib/MMBtu) |  |  |
|                 |                                                                                                                                                                                                                                                                    |                                                                                 | Eff                                | ective (see                         | Section 401)                                                      |  |  |
|                 | Gas                                                                                                                                                                                                                                                                | eous Fuel-Fired<br>Equipment                                                    | Proc<br>Tempe                      | rature                              | All Temperatures                                                  |  |  |
|                 | Cooking                                                                                                                                                                                                                                                            |                                                                                 | < 500°F<br>40<br>(0.049)           | ≥ 500 °F<br>60<br>(0.073)           | 800<br>(0.60)                                                     |  |  |
|                 | BACT<br>Source: <u>SCAQMD BACT Guidelines for Non-Major Polluting Facilities, page</u><br><u>33</u> (2/1/2019)                                                                                                                                                     |                                                                                 |                                    |                                     |                                                                   |  |  |
|                 | Coffee I                                                                                                                                                                                                                                                           | Roaster, < 110,000 B                                                            | TU/hr                              |                                     |                                                                   |  |  |
|                 | VOC                                                                                                                                                                                                                                                                | No standard                                                                     |                                    |                                     |                                                                   |  |  |
|                 | NOx                                                                                                                                                                                                                                                                | Compliance with Ru                                                              | ule 1147                           |                                     |                                                                   |  |  |
|                 | SOx                                                                                                                                                                                                                                                                | Natural Gas                                                                     |                                    |                                     |                                                                   |  |  |
|                 | PM10                                                                                                                                                                                                                                                               | Natural Gas                                                                     |                                    |                                     |                                                                   |  |  |
|                 | PM2.5                                                                                                                                                                                                                                                              | No standard                                                                     |                                    |                                     |                                                                   |  |  |
| South Coast     | со                                                                                                                                                                                                                                                                 | No standard                                                                     |                                    |                                     |                                                                   |  |  |
| AQMD            | Coffee F                                                                                                                                                                                                                                                           | Coffee Roaster, ≥ 110,000 BTU/hr                                                |                                    |                                     |                                                                   |  |  |
|                 | VOC                                                                                                                                                                                                                                                                | Afterburner (0.3 second retention time at 1200 °F)                              |                                    |                                     |                                                                   |  |  |
|                 | NOx                                                                                                                                                                                                                                                                | Compliance with Ru                                                              | ule 1147                           |                                     |                                                                   |  |  |
|                 | SOx                                                                                                                                                                                                                                                                | Natural Gas                                                                     |                                    |                                     |                                                                   |  |  |
|                 | PM10                                                                                                                                                                                                                                                               | Natural Gas with cyclone and afterburner (0.3 second retention time at 1200 °F) |                                    |                                     |                                                                   |  |  |
|                 | PM2.5                                                                                                                                                                                                                                                              | No standard                                                                     |                                    |                                     |                                                                   |  |  |
|                 | СО                                                                                                                                                                                                                                                                 | No standard                                                                     |                                    |                                     |                                                                   |  |  |
|                 | T-BACT                                                                                                                                                                                                                                                             | e no T-BACT stan                                                                | dards publisl                      | ned in the                          | clearinghouse for this                                            |  |  |

| District/Agency     | Best Available Control Technology (BACT)/Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                  |                                                                                                                   |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
|                     | RULE REQUIREMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                                                  |                                                                                                                   |  |  |
|                     | Reg XI, Rule 1147 – NOx Reductions from Miscellaneous Sources<br>(7/7/2017)<br>The purpose of this rule is to reduce nitrogen oxide emissions from gaseous<br>and liquid fuel fired combustion equipment as defined in the rule.                                                                                                                                                                                                                                                                                     |                                                                     |                                                                  |                                                                                                                   |  |  |
|                     | The rule requires than on or after January 1, 2010 any person owning or operating a unit subject to the rule shall not operate the unit in a manner that exceeds the applicable nitrogen oxide emission limits specified in Table 1 at the time a District permit is required for operation of a new, relocated or modified unit. The NOx emission limits of Table 1 only apply to units greater than or equal to 325,000 BTU/hr.                                                                                    |                                                                     |                                                                  |                                                                                                                   |  |  |
| South Coast<br>AQMD | Per section (g)(2), the provisions of this rule shall not apply to charbroilers or food ovens. Food oven means an oven, cooker, dryer, roaster, or other fuel-<br>fired unit, excluding fryer, used to heat, cook, dry, roast, or prepare food, food products, or products used for making beverages for human consumption. Since a coffee roaster is used to roast products used for making beverages for human consumption, coffee roasters are exempt from this rule. However, afterburners are still applicable. |                                                                     |                                                                  |                                                                                                                   |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | x Emission Limit fo                                              | -                                                                                                                 |  |  |
|                     | Equipment<br>Categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ratings ≥ 325,000 BTU/hr<br>PPM @ 3% O2, dry or lb/mmBtu heat input |                                                                  |                                                                                                                   |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Process Temperature                                                 |                                                                  |                                                                                                                   |  |  |
|                     | Gaseous Fuel-<br>Fired Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 800° F                                                            | > 800 ° F and <<br>1200° F                                       | ≥ 1200 ° F                                                                                                        |  |  |
|                     | Afterburner,<br>Degassing Unit,<br>Remediation Unit,<br>Thermal Oxidizer,<br>Catalytic Oxidizer<br>or Vapor<br>Incinerator (A)                                                                                                                                                                                                                                                                                                                                                                                       | 60 ppm or<br>0.073<br>lb/mmBtu                                      | 60 ppm or 0.073<br>lb/mmBtu                                      | 60 ppm or 0.073<br>Ib/mmBtu                                                                                       |  |  |
|                     | The emission lim<br>the burner is inci                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | erate air toxics, V<br>it applies solely v<br>nerating air toxics   | OCs, or other vapol<br>when burning 100%<br>s, VOCs, or other va | 0% natural gas that<br>rs; or to heat a unit.<br>fuel and not when<br>pors. The unit shall<br>fueled with natural |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                  |                                                                                                                   |  |  |

| District/Agency          | Best Available Control Technology (BACT)/Requirements                                                   |                                                                                                                                                                                                                 |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          | BACT<br>Source: N                                                                                       | ISR Requirements for BACT, page 3-8. (6/2011)                                                                                                                                                                   |  |  |
|                          | Coffee Roaster (A)                                                                                      |                                                                                                                                                                                                                 |  |  |
|                          | VOC                                                                                                     | Afterburner (0.3 second retention time at 1200 °F)                                                                                                                                                              |  |  |
|                          | NOx                                                                                                     | Natural Gas, with heat recovery on afterburner exhaust to reduce fuel consumption                                                                                                                               |  |  |
|                          | SOx                                                                                                     | Natural Gas                                                                                                                                                                                                     |  |  |
| San Diego<br>County APCD | PM10                                                                                                    | Natural Gas with cyclone and afterburner (0.3 second retention time at 1200 °F)                                                                                                                                 |  |  |
|                          | PM2.5                                                                                                   | No standard                                                                                                                                                                                                     |  |  |
|                          | со                                                                                                      | No standard                                                                                                                                                                                                     |  |  |
|                          | equi                                                                                                    | applicant may choose to limit the Potential to Emit (PTE) from the pment to less than 10 pounds per day for each pollutant in lieu of ting the stated BACT requirement.                                         |  |  |
|                          | <b><u>T-BACT</u></b><br>There are no T-BACT standards published in the clearinghouse for this category. |                                                                                                                                                                                                                 |  |  |
|                          | RULE REQUIREMENTS:<br>None                                                                              |                                                                                                                                                                                                                 |  |  |
|                          | <u>BACT</u><br>Source: E                                                                                | 3AAQMD BACT Guidelines <u>: 47.1.1 (3/3/1992)</u> , <u>47.3.1 (4/2/2008)</u>                                                                                                                                    |  |  |
|                          | Coffee I                                                                                                | Roaster, < 110,00 BTU/hr                                                                                                                                                                                        |  |  |
|                          | voc                                                                                                     | Afterburner (0.3 second retention time at ≥1200 °F); or catalytic afterburner (≥ 550 °F) – (Technologically Feasible)                                                                                           |  |  |
|                          | NOx                                                                                                     | <ol> <li>Natural gas firing with combustion modifications –<br/>(Technologically feasible)</li> <li>Natural gas firing – (Achieved in Practice)</li> </ol>                                                      |  |  |
| Bay Area AQMD            | SOx                                                                                                     | Natural Gas                                                                                                                                                                                                     |  |  |
|                          | PM10                                                                                                    | <ol> <li>Natural gas firing with baghouse and afterburner (0.3 second<br/>retention time at ≥1400 °F) – (Technologically Feasible)</li> <li>Natural Gas firing with cyclone – (Achieved in Practice)</li> </ol> |  |  |
|                          | PM2.5                                                                                                   | No standard                                                                                                                                                                                                     |  |  |
|                          | со                                                                                                      | No standard                                                                                                                                                                                                     |  |  |
|                          |                                                                                                         |                                                                                                                                                                                                                 |  |  |

| District/Agency            | Best Available Control Technology (BACT)/Requirements                                                                                                                     |                                                                                                                        |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
|                            |                                                                                                                                                                           |                                                                                                                        |  |  |
|                            | Coffee Roaster, 110,00 BTU/hr to 3.5 MMBtu/hr                                                                                                                             |                                                                                                                        |  |  |
|                            | voc                                                                                                                                                                       | 0.047 lb/ton of beans roasted, afterburner (0.3 second retention time at ≥1400 °F) – (Achieved in Practice)            |  |  |
|                            | NOx                                                                                                                                                                       | 0.2 lb/MMBtu, natural gas firing – (Achieved in Practice)                                                              |  |  |
|                            | SOx                                                                                                                                                                       | Natural gas firing – (Achieved in Practice)                                                                            |  |  |
|                            | PM10                                                                                                                                                                      | 0.01 gr/dscf, Natural Gas with cyclone and afterburner (0.3 second retention time at 1400 °F) – (Achieved in Practice) |  |  |
| Bay Area AQMD              | PM2.5                                                                                                                                                                     | No standard                                                                                                            |  |  |
|                            | CO1. 0.1 lb/MMBtu, natural gas firing and use of heat exchangers –<br>(Technologically feasible)<br>2. 0.4 lb/MMBtu, good combustion practice – (Achieved in<br>Practice) |                                                                                                                        |  |  |
|                            | <u>T-BACT</u>                                                                                                                                                             |                                                                                                                        |  |  |
|                            | Coffee                                                                                                                                                                    | Roaster, < 110,00 BTU/hr                                                                                               |  |  |
|                            | voc                                                                                                                                                                       | Afterburner (0.3 second retention time at ≥1200 °F); or catalytic afterburner (≥ 550 °F) – (Technologically Feasible)  |  |  |
|                            | PM10                                                                                                                                                                      | Natural gas firing with baghouse and afterburner (0.3 second retention time at ≥1400 °F) – (Technologically Feasible)  |  |  |
|                            | <u>RULE R</u><br>None                                                                                                                                                     | EQUIREMENTS:                                                                                                           |  |  |
| San Joaquin<br>Valley APCD | There ar                                                                                                                                                                  | SJVUAPCD BACT Guideline<br>e no BACT standards published in the clearinghouse for this category.<br>EQUIREMENTS        |  |  |

The following control technologies have been identified and are ranked based on stringency:

|           | SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pollutant | Control Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VOC       | For Coffee Roasters < 110,000 Btu/hr         1. ≥ 90% control efficiency [SMAQMD]         2. Afterburner (≥ 0.3 second retention time at 1200 °F) [SDAPCD]         For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr         1. ≥ 90% control efficiency [SMAQMD]         2. 0.047 lb/ton of beans roasted, afterburner (≥ 0.3 second retention time at ≥1400 °F) [BAAQMD]         3. Afterburner (≥ 0.3 second retention time at 1200 °F) [SCAQMD, SDAPCD]                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOx       | <ul> <li>For Coffee Roasters &lt; 110,000 Btu/hr</li> <li>1. Natural gas, with heat recovery on afterburner exhaust to reduce fuel consumption [SDPACD]<sup>(A)</sup></li> <li>2. Natural gas fuel [SMAQMD, SCAQMD, BAAQMD]</li> <li>For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr</li> <li>1. For units ≥ 325,000 BTU/hr: 40 ppm NOx at 3% O<sub>2</sub> or 0.049 lb/MMBtu for roaster burners &lt; 500 °F [SMAQMD], 60 ppm NOx at 3% O<sub>2</sub> or 0.073 lb/MMBtu for roaster burners ≥ 500 °F [SMAQMD]</li> <li>2. For units ≥ 325,000 BTU/hr: 60 ppm NOx at 3% O<sub>2</sub> or 0.073 lb/MMBtu for afterburners, thermal oxidizers, catalytic oxidizers, and vapor incinerators [SCAQMD]</li> <li>3. Natural gas, with heat recovery on afterburner exhaust to reduce fuel consumption [SDAPCD]<sup>(A)</sup></li> <li>4. 0.2 lb/MMBtu, natural gas firing [BAAQMD]</li> </ul> |
| SOx       | <u>For Coffee Roasters &lt; 110,000 Btu/hr</u><br>1. Natural gas fuel [SMAQMD, SCAQMD, SDAPCD, BAAQMD]<br><u>For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr</u><br>1. Natural gas fuel [SMAQMD, SCAQMD, SDAPCD, BAAQMD]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PM10      | For Coffee Roasters < 110,000 Btu/hr         1. Natural gas with cyclone and afterburner (≥ 0.3 second retention time at 1200 °F) [SDAPCD]         2. Cyclone and natural gas fuel [SMAQMD]         3. Natural gas fuel [SCAQMD]         For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr         1. 0.01 gr/dscf, natural gas with cyclone and afterburner (≥0.3 second retention time at 1400 °F) [BAAQMD]         2. Natural gas with cyclone and afterburner (≥0.3 second retention time at 1400 °F) [BAAQMD]         3. Natural gas with cyclone and afterburner (≥0.3 second retention time at 1400 °F) [SCAQMD]         3. Cyclone and natural gas fuel [SMAQMD]                                                                                                                                                                                                                  |

|                      | SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES                                                                                                                                                                                                                                     |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pollutant            | Control Technology                                                                                                                                                                                                                                                                       |  |  |  |  |
| PM2.5                | For Coffee Roasters < 110,000 Btu/hr                                                                                                                                                                                                                                                     |  |  |  |  |
| со                   | For Coffee Roasters < 110,000 Btu/hr                                                                                                                                                                                                                                                     |  |  |  |  |
| HAP/VHAP<br>(T-BACT) | <ul> <li>For Coffee Roasters &lt; 110,000 Btu/hr</li> <li>1. Afterburner (0.3 second retention time at ≥1200 °F); or catalytic afterburner (≥ 550 °F) [BAAQMD]</li> <li>2. Natural gas firing with baghouse and afterburner (≥0.3 second retention time at ≥1400 °F) [BAAQMD]</li> </ul> |  |  |  |  |
| (T-BACT)             | <ol> <li>Afterburner (0.3 second retention time at ≥1200 °F); or catalytic afterburner (a 550 °F) [BAAQMD]</li> <li>Natural gas firing with baghouse and afterburner (≥0.3 second retention time</li> </ol>                                                                              |  |  |  |  |

(A) SDAPCD has a BACT trigger level of 10 lbs/day. In order to emit 10 lbs/day of NOx a burner would need to be 4.3 MMBtu/hr, assuming the uncontrolled small boiler NOx emission factor from AP-42, Table 1.4-1 and 24 hrs/day of operation.

### BACT for Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr Discussion:

BAAQMD lists emission standards for VOC, NOx, PM10, and CO. However, due to BAAQMD's BACT trigger level of 10 lbs/day only industrial sized facilities trigger these standards. BAAQMD BACT requirements were based on roaster permits for Peet's Coffee and Tea Inc., which have throughputs of 2,200 lbs beans/hr and 3.5 MMBtu/hr burners. Non-industrial roasters have typical throughputs of around 100-600 lbs/hr and burner ratings of 50,000-600,000 btu/hr, based on 12-60 kg capacity roasters. Most permitted coffee roasters in BAAQMD's size category of 110,000 BTU/hr to 3.5 MMBtu/hr have not been source tested to confirm these standards and therefore the emission standards are not considered achieved in practice. However, for the associated control technology are used by almost all roasters and can be considered BACT as these technologies have been achieved in practice.

SDAPCD lists heat recovery on afterburner exhaust to reduce fuel consumption as BACT for NOx. However, due to SDAPCD's BACT trigger level of 10 lbs/day only industrial sized facilities trigger these standards. In order to emit 10 lbs/day of NOx a burner would need to be 4.3 MMBtu/hr and operate 24 hrs/day, assuming the uncontrolled small boiler NOx emission factor from AP-42. Therefore, heat recovery on afterburner exhaust won't be considered achieved in practice for this BACT category of roasters  $\leq$  3.5 MMBtu/hr.

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

| BEST CONTROL TECHNOLOGIES ACHIEVED |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |  |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| Pollutant                          | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                | Source                            |  |  |  |
| VOC                                | For Coffee Roasters < 110,000 Btu/hr<br>1. ≥ 90% control efficiency, Afterburner (≥0.3 second<br>retention time at <b>1200</b> ° <b>F</b> )                                                                                                                                                                                                                                                                                                             | SMAQMD, SDAPCD                    |  |  |  |
|                                    | <ul> <li>For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr</li> <li>1. ≥ 90% control efficiency, lb/ton of beans roasted,<br/>afterburner (≥0.3 second retention time at ≥1400 °F)</li> </ul>                                                                                                                                                                                                                                                          | SMAQMD, BAAQMD                    |  |  |  |
|                                    | <u>For Coffee Roasters &lt; 110,000 Btu/hr</u><br>1. Natural gas fuel                                                                                                                                                                                                                                                                                                                                                                                   | SMAQMD                            |  |  |  |
| NOx                                | <ul> <li>For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr</li> <li>1. For units ≥ 325,000 BTU/hr: 40 ppm NOx at 3% O<sub>2</sub> or 0.049 lb/MMBtu for roaster burners &lt; 500°F, 60 ppm NOx at 3% O<sub>2</sub> or 0.073 lb/MMBtu for roaster burners ≥ 500 °F</li> <li>2. For units ≥ 325,000 BTU/hr: 60 ppm NOx at 3% O<sub>2</sub> or 0.073 lb/MMBtu for afterburners, thermal oxidizers, octobric oxidizers, and waper incidentation</li> </ul> | SMAQMD, SCAQMD                    |  |  |  |
|                                    | catalytic oxidizers, and vapor incinerators                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |
| SOx                                | For Coffee Roasters < 110,000 Btu/hr<br>1. Natural gas fuel                                                                                                                                                                                                                                                                                                                                                                                             | SMAQMD, SCAQMD,<br>SDAPCD, BAAQMD |  |  |  |
|                                    | For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr<br>2. Natural gas fuel                                                                                                                                                                                                                                                                                                                                                                               | SMAQMD, SCAQMD,<br>SDAPCD, BAAQMD |  |  |  |
| PM10                               | <ul> <li>For Coffee Roasters &lt; 110,000 Btu/hr</li> <li>1. Natural gas with cyclone and afterburner (≥0.3 second retention time at 1200 °F)</li> </ul>                                                                                                                                                                                                                                                                                                | SDAPCD                            |  |  |  |
| PM10                               | <ul> <li>For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr</li> <li>1. Natural Gas with cyclone and afterburner (≥0.3 second retention time at 1400 °F)</li> </ul>                                                                                                                                                                                                                                                                                     | BAAQMD                            |  |  |  |
|                                    | For Coffee Roasters < 110,000 Btu/hr<br>1. Cyclone and natural gas fuel                                                                                                                                                                                                                                                                                                                                                                                 | SMAQMD                            |  |  |  |
| PM2.5                              | For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr<br>1. Cyclone and natural gas fuel                                                                                                                                                                                                                                                                                                                                                                   | SMAQMD                            |  |  |  |
|                                    | For Coffee Roasters < 110,000 Btu/hr<br>1. Natural gas fuel and good combustion practices                                                                                                                                                                                                                                                                                                                                                               | SMAQMD                            |  |  |  |
| со                                 | For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr<br>1. Natural gas fuel, and good combustion practices.                                                                                                                                                                                                                                                                                                                                               | SMAQMD, BAAQMD                    |  |  |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |  |  |  |

| BEST CONTROL TECHNOLOGIES ACHIEVED |                                                                                                                                                                                                                                                                         |        |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Pollutant Standard Source          |                                                                                                                                                                                                                                                                         |        |  |  |
| HAP/VHAP<br>(T-BACT)               | <ul> <li>For Coffee Roasters &lt; 110,000 Btu/hr</li> <li>1. Afterburner (≥0.3 second retention time at ≥1200 °F); or catalytic afterburner (≥ 550 °F)</li> <li>2. Natural gas firing with baghouse and afterburner (≥0.3 second retention time at ≥1400 °F)</li> </ul> | BAAQMD |  |  |

### B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

### Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

| Pollutant | Technologically Feasible Alternatives                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| VOC       | No other technologically feasible option identified (A)                                                                        |
| NOx       | No other technologically feasible option identified                                                                            |
| SOx       | No other technologically feasible option identified                                                                            |
| PM10      | <u>For Coffee Roasters &lt; 110,000 Btu/hr</u> (A)<br>Baghouse and afterburner (≥0.3 sec retention time at ≥1400°F)            |
| PM2.5     | No other technologically feasible option identified                                                                            |
| со        | For Coffee Roasters 110,000 Btu/hr to 3.5 MMBtu/hr<br>1. 0.1 lb/MMBtu, natural gas firing with use of heat exchangers [BAAQMD] |

(A) BAAQMD lists an afterburner with a 0.3 retention time as technologically feasible for both VOC and PM10 for coffee roasters less than 110,000 Btu/hr. However, an afterburner with a 0.3 retention time for roasters less than 110,000 Btu/hr is considered achieved in practice by SMAQMD and SDAPCD BACT determinations.

### **Cost Effective Determination:**

After identifying the technologically feasible control options, a cost analysis is performed to take into consideration economic impacts for all technologically feasible controls identified.

### Maximum Cost per Ton of Air Pollutants Controlled

1. A control technology is considered to be cost-effective if the cost of controlling one ton of that air pollutant is less than the limits specified below (except coating

operations):

| <u>Pollutant</u> | Maximum Cost (\$/ton) |
|------------------|-----------------------|
| ROG              | 17,500                |
| NO <sub>X</sub>  | 24,500                |
| PM10             | 11,400                |
| SO <sub>X</sub>  | 18,300                |
| CO               | TBD if BACT triggered |

### Cost Effectiveness Analysis Summary

The cost analysis was processed in accordance with the EPA OAQPS Air Pollution Control Cost Manual (Sixth Edition). The sales tax rate was based on the District's standard rate of 8.5% as approved on 10/17/16. The electricity (13.8 cents/kWh) rates were based on a commercial application as approved by the District on 10/17/16. The life of the equipment was based on the EPA cost manual recommendation. The interest rate was based on the previous 6-month average interest rate on United States Treasury Securities (based on the life of the equipment) and addition of two percentage points and rounding up to the next higher integer rate. The labor (Occupation Code 51-3091: Food and Tobacco Roasting, Baking, and Drying Machine Operators and Tenders) and maintenance (Occupation Code 49-9099: Installation, maintenance, and repair workers, all other) rates were based on data from the Bureau of Labor Statistics.

### **Baghouse:**

Equipment Life = 20 years Total Capital Investment = \$11,680.84 Direct Annual Cost = \$8,106.54 per year Indirect Annual Cost = \$5,873.19 per year Total Annual Cost = \$13,979.74 per year PM10 Removed = 0.31 tons per year

### Cost of PM10 Removal = \$45,060.32 per ton reduced

A detailed calculation of the cost effectiveness for PM10 removal with a baghouse is shown in Attachment B. As shown above, the cost of venting the emissions to a baghouse is not cost effective.

### CO BACT

BACT for CO is not triggered for this type of source and would only be triggered for extremely large process rates. Therefore, a cost effective analysis for BAAQMD's CO BACT for roasters between  $\geq$  110,000 Btu/hr to 3.5 MMBtu/hr won't be evaluated for this BACT determination. BAAQMD identified 0.1 lb/MMBtu and natural gas firing with use of heat exchangers as technologically feasible.

The CO BACT trigger for SMAQMD is emissions greater than 550 lb/day. At 3.5 MMBtu/hr and a CO emission factor of 295.5 lb/MMcf (400 ppm CO), the worst case natural gas combustion emissions for 24 hours of operation would be 24.8 lbs CO per day. The CO emissions of a continuous roaster per AP-42 is 1.5 lb/ton coffee roasted. If a roaster operated for 24 hours, in order to trigger BACT for CO a roaster would need to process at least 350

BACT Determination Coffee Roasters ≤ 3.5 MMbtu/hr Page 12 of 13

tons of coffee beans per day. Therefore, it is highly unlikely that any coffee roasting source of this size would trigger BACT for CO. If BACT for CO is ever triggered for a coffee roaster, a new BACT will be made at that time.

### C. SELECTION OF BACT:

Based on the cost effectiveness determinations, BACT for NOx will remain at what is currently achieved in practice and BACT for PM2.5 will be set to be the same as for PM10 (use of natural gas).

|                           | BACT # 141 FOR COFFEE ROASTERS < 110,000 BTU/HR                                                                               |                                   |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| Pollutant Standard Source |                                                                                                                               |                                   |  |  |  |
| VOC                       | ≥ 90% control efficiency, Afterburner (≥0.3 second retention time at <b>1200</b> ° <b>F</b> ) or equivalent technology        | SMAQMD<br>SDAPCD                  |  |  |  |
| NOx                       | Natural gas fuel                                                                                                              | SCAQMD                            |  |  |  |
| SOx                       | Natural gas fuel                                                                                                              | SMAQMD, SCAQMD,<br>SDAPCD, BAAQMD |  |  |  |
| PM10                      | Natural gas fuel with cyclone and afterburner (0.3 second retention time at <b>1200</b> ° <b>F</b> ) or equivalent technology | SDAPCD                            |  |  |  |
| PM2.5                     | Cyclone and natural gas fuel                                                                                                  | SMAQMD                            |  |  |  |
| СО                        | Natural gas fuel and good combustion practices                                                                                | SMAQMD                            |  |  |  |

| BAC       | BACT # 184 FOR COFFEE ROASTERS 110,000 BTU/HR to 3.5 MMBTU/HR                                                                                                                                                                                                                                                                                                                                              |                                   |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| Pollutant | Standard                                                                                                                                                                                                                                                                                                                                                                                                   | Source                            |  |  |  |
| VOC       | ≥ 90% control efficiency, afterburner (≥0.3 second retention time at ≥1400 °F) or equivalent technology                                                                                                                                                                                                                                                                                                    | SMAQMD, BAAQMD                    |  |  |  |
| NOx       | <ol> <li>For units ≥ 325,000 BTU/hr: 40 ppm NOx at 3% O<sub>2</sub> or<br/>0.049 lb/MMBtu for roaster burners &lt; 500 °F, 60 ppm<br/>NOx at 3% O<sub>2</sub> or 0.073 lb/MMBtu for roaster burners<br/>≥ 500 °F</li> <li>For units ≥ 325,000 BTU/hr: 60 ppm NOx at 3% O<sub>2</sub> or<br/>0.073 lb/MMBtu for afterburners, thermal oxidizers,<br/>catalytic oxidizers, and vapor incinerators</li> </ol> | SMAQMD, SCAQMD                    |  |  |  |
| SOx       | Natural gas fuel                                                                                                                                                                                                                                                                                                                                                                                           | SMAQMD, SCAQMD,<br>SDAPCD, BAAQMD |  |  |  |
| PM10      | Natural gas with cyclone and afterburner (≥0.3 second retention time at <b>1400</b> ° <b>F</b> ) or equivalent technology                                                                                                                                                                                                                                                                                  | BAAQMD                            |  |  |  |
| PM2.5     | Cyclone and natural gas fuel                                                                                                                                                                                                                                                                                                                                                                               | SMAQMD                            |  |  |  |
| со        | Natural gas fuel and good combustion practices                                                                                                                                                                                                                                                                                                                                                             | SMAQMD, BAAQMD                    |  |  |  |

**BACT Determination** Coffee Roasters ≤ 3.5 MMbtu/hr Page 13 of 13

### D. SELECTION OF T-BACT:

The toxics at issue with this technology are VOCs. The control of VOCs through meeting the BACT standard will also control toxics found in the VOCs. Therefore, the BACT VOC controls are also the T-BACT controls.

APPROVED BY: Bri Fluch DATE: 9-4-19

## **Attachment A**

BACT Determinations form SMAQMD, SCAQMD, SDAPCD, & BAAQMD

| REPLACED |
|----------|
|----------|

| BACT Size  | Minor Source                                    | BACT                               | COFFEE ROASTER V                                 | W/ AFTERBURNE      |
|------------|-------------------------------------------------|------------------------------------|--------------------------------------------------|--------------------|
| BACT Det   | ermination Numb                                 | er: 100                            | BACT Determination Date:                         | 1/30/2015          |
|            |                                                 | Equipment                          | Information                                      |                    |
| Permit Nu  | mber: N/A                                       | Generic BACT Determination         | n                                                |                    |
| Equipmen   | t Description:                                  | COFFEE ROASTER W                   | AFTERBURNER                                      |                    |
| Unit Size/ | Rating/Capacity:                                | Minor Source BACT                  |                                                  |                    |
| Equipmen   | t Location:                                     |                                    |                                                  |                    |
|            |                                                 |                                    |                                                  |                    |
|            |                                                 | BACT Determina                     | tion Information                                 |                    |
|            | 1                                               |                                    |                                                  |                    |
| ROCs       | Standard:                                       | ≥90% control efficiency            | ter burner and ≥0.3 second retention time at 120 | WE to be reached   |
|            | Technology<br>Description:                      | in the final 5 minutes of the roas |                                                  | o F, to be reached |
|            | Basis:                                          | Achieved in Practice               |                                                  |                    |
| NOx        | Standard:                                       |                                    |                                                  |                    |
|            | Technology                                      | Natural Gas Fuel                   |                                                  |                    |
|            | Description:                                    |                                    |                                                  |                    |
|            | Basis:                                          | Achieved in Practice               |                                                  |                    |
| SOx        | Standard:                                       |                                    |                                                  |                    |
|            | Technology                                      | Natural Gas Fuel                   |                                                  |                    |
|            | Description:                                    |                                    |                                                  |                    |
|            | Basis:                                          | Achieved in Practice               |                                                  |                    |
| PM10       | Standard:                                       | Cyclone and Natural Gas Fuel       |                                                  |                    |
|            | Technology                                      | Cyclone and Natural Gas Fuel       |                                                  |                    |
|            | Description:<br>Basis:                          | Achieved in Practice               |                                                  |                    |
| D140 5     | Standard:                                       |                                    |                                                  |                    |
| PM2.5      | Technology                                      | Cyclone and Natural Gas Fuel       |                                                  |                    |
|            | Description:                                    |                                    |                                                  |                    |
|            | Basis:                                          | Achieved in Practice               |                                                  |                    |
| со         | Standard:                                       |                                    |                                                  |                    |
|            | Technology                                      | Natural gas fuel and good comb     | ustion practices                                 |                    |
|            | Description:                                    |                                    |                                                  |                    |
|            | Basis:                                          | Achieved in Practice               |                                                  |                    |
| LEAD       | Standard:                                       |                                    |                                                  |                    |
|            | Technology                                      |                                    |                                                  |                    |
|            | Description:<br>Basis:                          |                                    |                                                  |                    |
|            |                                                 |                                    |                                                  |                    |
| Comment    | s: This is a generic B/<br>California and/or ot |                                    | T determinations made, and published, by other a | air agencies in    |
|            |                                                 |                                    |                                                  |                    |

### SCAQMD

10-20-2000 Rev. 0 2-1-2019 Rev. 1

Equipment or Process: Coffee Roasting

|                                                           |                                                                 | Crit                                       | eria Pollutants       |    |                                                                                                        |           |
|-----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|-----------------------|----|--------------------------------------------------------------------------------------------------------|-----------|
| Subcategory/<br>Rating/Size                               | VOC                                                             | NOx                                        | SOx                   | CO | <b>PM</b> 10                                                                                           | Inorganic |
| Roaster, < 110,000<br>BTU/Hr                              |                                                                 | Compliance with<br>Rule 1147<br>(2-1-2019) | Natural Gas<br>(1988) |    | Natural Gas<br>(1988)                                                                                  |           |
| Roaster, ≥ 110,000<br>BTU/Hr                              | Afterburner (0.3 Sec<br>Retention Time at<br>1200 °F)<br>(1990) | Compliance with<br>Rule 1147<br>(2-1-2019) | Natural Gas<br>(1990) |    | Natural Gas with Cyclone<br>and Afterburner (≥ 0.3<br>Second Retention Time at<br>≥ 1200 °F)<br>(1990) |           |
| Handling Equipment,<br>< 1,590 Lbs/Hr<br>All <sup>1</sup> |                                                                 |                                            |                       |    |                                                                                                        |           |
| Handling Equipment,<br>≥ 1,590 Lbs/Hr<br>All              |                                                                 |                                            |                       |    | Cyclone<br>(1990)                                                                                      |           |

1) At the date of the last revision for this category, there was no Achieved In Practice BACT Determination for this subcategory. Technologically Feasible options listed in historic SCAQMD BACT Guidelines for this subcategory require cost effective analyses before they can be listed in these current Guidelines.

## SDAPCD

### COFFEE ROASTERS Fee Schedule 50A

Review the BACT Control Option listed below. The applicant must propose the Control Option listed or perform a Top-down BACT Analysis as described in Section 4 to justify the selection of another Control Option. The applicant will be required to provide documentation that the Control Option selected meets the requirements listed in the table.

|                             | VOC                                                               | NOx                                                                                          | SOx            | PM                                                                                             |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------|
| BACT Emission<br>Rate Limit | Not<br>Determined                                                 | Not Determined                                                                               | Not Determined | Not Determined                                                                                 |
| BACT Control<br>Option      | Afterburner<br>(0.3 sec<br>retention<br>time at 1200<br>degrees F | Natural gas with<br>heat recovery on<br>afterburner exhaust<br>to reduce fuel<br>consumption | Natural gas    | Natural gas with<br>cyclone and<br>afterburner (0.3<br>sec retention time<br>at 1200 degrees F |
|                             |                                                                   | (A/P)                                                                                        | (A/P)          | (A/P)                                                                                          |

The applicant may choose to limit the Potential to Emit (PTE) from the equipment to less than 10 pounds per day for each pollutant in lieu of meeting the stated BACT requirement.

### Source Category

|         |                  | Revision:   | 2        |
|---------|------------------|-------------|----------|
| Source: | Coffee Roasting  | Document #: | 47.1.1   |
| Class:  | < 110,000 Btu/hr | Date:       | 03/03/92 |

### Determination

| POLLUTANT        | BACT<br>1. Technologically Feasible/ Cost<br>Effective<br>2. Achieved in Practice                                                                                                       | TYPICAL TECHNOLOGY                                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| POC              | 1. Afterburner ( $\geq 0.3$ sec. retention<br>time at $\geq 1200^{\circ}F$ ); or catalytic<br>afterburner ( $\geq 550^{\circ}F$ ) <sup>a,b,T</sup><br>2. n/d                            | <ol> <li>BAAQMD Approved Design and<br/>Operation<sup>b</sup></li> <li>n/d</li> </ol>                                                  |
| NOx              | <ol> <li>Natural gas firing with<br/>combustion modifications<sup>a,b</sup></li> <li>Natural gas firing<sup>a,b</sup></li> </ol>                                                        | <ol> <li>BAAQMD Approved Design and<br/>Operation<sup>b</sup></li> <li>Fuel Selection<sup>b</sup></li> </ol>                           |
| so <sub>2</sub>  | 1. Natural gas firing <sup>b</sup><br>2. Natural gas firing <sup>b</sup>                                                                                                                | <ol> <li>Fuel Selection<sup>b</sup></li> <li>Fuel Selection<sup>b</sup></li> </ol>                                                     |
| со               | 1. n/d<br>2. n/s                                                                                                                                                                        | 1. n/d<br>2. Good Combustion Practice <sup>b</sup>                                                                                     |
| PM <sub>10</sub> | <ol> <li>Natural gas firing with baghouse<br/>and afterburner (≥ 0.3 sec retention<br/>time at ≥1400°F)<sup>a,b,T</sup></li> <li>Natural gas firing with cyclone<sup>b</sup></li> </ol> | <ol> <li>BAAQMD Approved Design and<br/>Operation<sup>b</sup></li> <li>BAAQMD Approved Design and<br/>Operation<sup>b</sup></li> </ol> |
| NPOC             | 1. n/a<br>2. n/a                                                                                                                                                                        | 1. n/a<br>2. n/a                                                                                                                       |

### References

| а. | SCAQMD Guideline |
|----|------------------|
| b. | BAAQMD           |
| Т. | TBACT            |

### BAY AREA AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guideline

### Source Category

| Source: | Coffee Roasting                 | Revision:   | 1      |
|---------|---------------------------------|-------------|--------|
|         | cojjec reasing                  | Document #: | 47.3.1 |
| Class:  | 110,000 BTU/hr to 3.5 MM BTU/hr | Date:       | 4/2/08 |

### Determination

| POLLUTANT       | BACT<br>1. Technologically Feasible/ Cost<br>Effective<br>2. Achieved in Practice | TYPICAL TECHNOLOGY                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| POC             | 1. n/d<br>2. 0.047 lb/ton of beans roasted                                        | 1. $n/d$<br>2. Afterburner ( $\geq 0.3$ sec. retention<br>time at $\geq 1400^{\circ}F$ ) <sup>a</sup>                                      |
| NOx             | 1. n/d<br>2. 0.2 lb/MMBTU <sup>4</sup>                                            | 1. n/d<br>2. Natural Gas Firing <sup>a</sup>                                                                                               |
| SO <sub>2</sub> | 1. Natural gas firing <sup>a</sup><br>2. Natural gas firing <sup>a</sup>          | <ol> <li>Fuel Selection<sup>a</sup></li> <li>Fuel Selection<sup>a</sup></li> </ol>                                                         |
| со              | 1. 0.1 lb/MMBTU<br>2. 0.4 lb/MMBTU                                                | <ol> <li>Natural Gas Firing &amp; Use of<br/>Heat Exchangers<sup>a</sup></li> <li>Good combustion practice<sup>a</sup></li> </ol>          |
| PM10            | 1. n/d<br>2. 0.01 gr/dscf <sup>a</sup>                                            | <ol> <li>n/d</li> <li>Natural gas firing with cyclone<br/>and afterburner (≥ 0.3 sec retention<br/>time at ≥1400°F)<sup>a</sup></li> </ol> |
| NPOC            | 1. n/a<br>2. n/a                                                                  | 1. n/a<br>2. n/a                                                                                                                           |

### References

a. BAAQMD Application # 13807 & 15187

## **Attachment B**

**Cost Effectiveness Determination for Baghouse** 

### COST EFFECTIVENESS ANALYSIS FOR BAGHOUSE

This cost effectiveness analysis was performed using EPA's OAQPS Control Cost Manual

| EPA publication No. 452/B-02-001, Chapte | <sup>r</sup> 1, Baghouses and Filters (12/98) |
|------------------------------------------|-----------------------------------------------|
|                                          |                                               |

| FACILITY NAME:       | Temple              |               |
|----------------------|---------------------|---------------|
| LOCATION:            | 2827 S St., Sacrame | nto           |
| PERMIT NO.:          | 25127               |               |
| EQUIPMENT            |                     |               |
| DESCRIPTION:         | Coffee Roaster      |               |
|                      |                     |               |
|                      |                     |               |
| PM10 Baghouse        |                     |               |
| Cost Effective       |                     |               |
| Requirements         |                     |               |
| Coffee beans         |                     |               |
| processed            | 546.5               | lb/hr         |
| PM10 Emission        |                     |               |
| Factor               | 1.114               | lb/ton        |
| PM Emission Rate     | 0.304               | lb/hr         |
| Hours per day        | 8                   |               |
| Days per week        | 5                   |               |
| Weeks per year       | 52                  |               |
| PM emission from     |                     |               |
| coffee roasting      |                     |               |
| operation            | 0.31657652          | tons/year     |
| Baghouse Control     |                     |               |
| Efficiency           | 98%                 |               |
| Controlled PM        |                     |               |
| Emissions            | 0.31                | tons/year     |
| CRF (5% interest     |                     |               |
| and 20 year life)    | 0.080242587         |               |
|                      |                     |               |
| Particulate Matter C | ontrol (Bag House)  |               |
| Cost Analysis        |                     |               |
| Gas to cloth ratio   |                     |               |
| for shaker or        |                     |               |
| reverse air bag      |                     |               |
| house                | 2.8                 | Table 1.1     |
| A                    | 15                  | Table 1.4     |
| В                    | 1                   | Table 1.4     |
| L                    | 0.1                 |               |
| D                    | 10                  |               |
|                      |                     |               |
| V                    | 11.11956286         | equation 1.11 |
| acfm of system       | 900                 | acfm          |
| Bag Size             | 80.93843355         | ft^2          |
| 0                    |                     | 1             |

### BACT Determination Coffee Roasters ≤ 3.5 MMbtu/hr Attachment B – Cost Effectiveness Analysis Page 2 of 3

| Cost of Pag house                                                                                                                                                                |                                                                                             |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Cost of Bag house                                                                                                                                                                |                                                                                             |                                                                      |
| common housing                                                                                                                                                                   | ¢ 2,000 70                                                                                  |                                                                      |
| design                                                                                                                                                                           | \$ 2,886.76                                                                                 |                                                                      |
| Cost of insulation                                                                                                                                                               | \$ 1,221.49                                                                                 |                                                                      |
| Cost of bag (Pulse                                                                                                                                                               |                                                                                             |                                                                      |
| jet, BBR - fiberglass,                                                                                                                                                           |                                                                                             |                                                                      |
| Table 1.8), bottom                                                                                                                                                               | 4                                                                                           |                                                                      |
| bag removal                                                                                                                                                                      | \$ 136.79                                                                                   |                                                                      |
| Bag house cages                                                                                                                                                                  | \$ 6.03                                                                                     |                                                                      |
| cage cost                                                                                                                                                                        | \$ 12.23                                                                                    | \$/cage                                                              |
| Total cage costs                                                                                                                                                                 | \$ 73.76                                                                                    |                                                                      |
| Equipment Costs                                                                                                                                                                  |                                                                                             |                                                                      |
| (A)                                                                                                                                                                              | \$ 4,318.80                                                                                 |                                                                      |
|                                                                                                                                                                                  | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                     |                                                                      |
| Instrumentation                                                                                                                                                                  | \$ 431.88                                                                                   | 0.10*A                                                               |
| California Sales                                                                                                                                                                 |                                                                                             |                                                                      |
| taxes                                                                                                                                                                            | \$ 367.10                                                                                   | 0.085*A                                                              |
| Freight                                                                                                                                                                          | \$ 215.94                                                                                   | 0.05*A                                                               |
| Purchase                                                                                                                                                                         |                                                                                             |                                                                      |
| Equipment Cost                                                                                                                                                                   |                                                                                             |                                                                      |
| (PEC)                                                                                                                                                                            | \$ 5,333.72                                                                                 |                                                                      |
| <b></b>                                                                                                                                                                          |                                                                                             |                                                                      |
| Direct Installation                                                                                                                                                              |                                                                                             |                                                                      |
| Costs                                                                                                                                                                            |                                                                                             |                                                                      |
| Foundation &                                                                                                                                                                     | A 040 05                                                                                    |                                                                      |
| Supports                                                                                                                                                                         | \$ 213.35                                                                                   | 0.04*PEC                                                             |
| Handling & erection                                                                                                                                                              | \$ 2,666.86                                                                                 | 0.50*PEC                                                             |
| Electrical                                                                                                                                                                       | \$ 426.70                                                                                   | 0.08*PEC                                                             |
| Piping                                                                                                                                                                           | \$ 53.34                                                                                    | 0.01*PEC                                                             |
| Insulation for                                                                                                                                                                   |                                                                                             |                                                                      |
| ductwork                                                                                                                                                                         | ¢ 272.26                                                                                    |                                                                      |
| Painting                                                                                                                                                                         | \$ 373.36                                                                                   | 0.07*PEC                                                             |
|                                                                                                                                                                                  | \$ 373.36<br>\$ 213.35                                                                      | 0.07*PEC<br>0.04*PEC                                                 |
| Total direct                                                                                                                                                                     |                                                                                             |                                                                      |
| Total direct<br>installation costs                                                                                                                                               |                                                                                             |                                                                      |
| installation costs                                                                                                                                                               | \$ 213.35                                                                                   |                                                                      |
| installation costs Indirect Costs                                                                                                                                                | \$ 213.35                                                                                   |                                                                      |
| installation costs<br>Indirect Costs<br>(installation)                                                                                                                           | \$ 213.35<br>\$ 3,946.95                                                                    | 0.04*PEC                                                             |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering                                                                                                            | \$ 213.35                                                                                   |                                                                      |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering<br>Construction and                                                                                        | \$ 213.35<br>\$ 3,946.95<br>\$ 533.37                                                       | 0.04*PEC<br>0.10*PEC                                                 |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering<br>Construction and<br>field expense                                                                       | \$ 213.35<br>\$ 3,946.95<br>\$ 533.37<br>\$ 1,066.74                                        | 0.04*PEC<br>0.10*PEC<br>0.20*PEC                                     |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering<br>Construction and                                                                                        | \$ 213.35<br>\$ 3,946.95<br>\$ 533.37<br>\$ 1,066.74<br>\$ 533.37                           | 0.04*PEC<br>0.10*PEC<br>0.20*PEC<br>0.10*PEC                         |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering<br>Construction and<br>field expense<br>Contractor fees<br>Startup-up                                      | \$ 213.35<br>\$ 3,946.95<br>\$ 533.37<br>\$ 1,066.74<br>\$ 533.37<br>\$ 533.37<br>\$ 533.37 | 0.04*PEC<br>0.10*PEC<br>0.20*PEC<br>0.10*PEC<br>0.01*PEC             |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering<br>Construction and<br>field expense<br>Contractor fees                                                    | \$ 213.35<br>\$ 3,946.95<br>\$ 533.37<br>\$ 1,066.74<br>\$ 533.37<br>\$ 53.34<br>\$ 53.34   | 0.04*PEC<br>0.10*PEC<br>0.20*PEC<br>0.10*PEC                         |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering<br>Construction and<br>field expense<br>Contractor fees<br>Startup-up<br>Performance test<br>Contingencies | \$ 213.35<br>\$ 3,946.95<br>\$ 533.37<br>\$ 1,066.74<br>\$ 533.37<br>\$ 533.37<br>\$ 533.37 | 0.04*PEC<br>0.10*PEC<br>0.20*PEC<br>0.10*PEC<br>0.01*PEC             |
| installation costs<br>Indirect Costs<br>(installation)<br>Engineering<br>Construction and<br>field expense<br>Contractor fees<br>Startup-up<br>Performance test                  | \$ 213.35<br>\$ 3,946.95<br>\$ 533.37<br>\$ 1,066.74<br>\$ 533.37<br>\$ 53.34<br>\$ 53.34   | 0.04*PEC<br>0.10*PEC<br>0.20*PEC<br>0.10*PEC<br>0.01*PEC<br>0.01*PEC |

### BACT Determination Coffee Roasters ≤ 3.5 MMbtu/hr Attachment B – Cost Effectiveness Analysis Page 3 of 3

| Total Capital       |             |                                                      |
|---------------------|-------------|------------------------------------------------------|
| Investment (TCI)    |             |                                                      |
| (PEC+DC+IC)         | \$11,680.84 |                                                      |
|                     |             |                                                      |
| Direct Annual Costs |             |                                                      |
| Operating Labor     | \$2,011.10  | (.5 hr/shift) (1 shift/8 hrs)(2080 hrs/yr)*\$15.47   |
| Supervisor          | \$301.67    | 15% of operating Labor                               |
| Maintenance Labor   | \$2,567.50  | (.5 hr/shift) (1 shift/8 hrs)(2080 hrs/yr)*\$19.75   |
| Material            | \$2,567.50  | 100% of maintenance labor                            |
| Bag replacement     |             |                                                      |
| labor               | \$0.19      | \$/ft2 of bag area                                   |
| CRF for bags (5%    |             |                                                      |
| interest and 2 year |             |                                                      |
| life)               | 0.54        |                                                      |
| Replacement Parts,  |             |                                                      |
| Bags                | \$123.45    | equation 1.13                                        |
|                     |             | (0.000181)(900 acfm)(10 in H2O)(2080 hr/yr)(\$0.138  |
| Electricity         | \$467.59    | kW/h)                                                |
|                     |             | (2scfm/1000acfm)*900cfm*(\$0.25/1000scf)*(60min/hr)* |
| Compressed Air      | \$56.16     | (2080hr/year)                                        |
| Waste Disposal      | \$10.86     | \$35/ton                                             |
| Total Annual DC     | \$8,106.54  |                                                      |
|                     |             |                                                      |
| Indirect Annual     |             |                                                      |
| Costs               |             |                                                      |
| Overhead            | \$4,468.66  | 60% of total labor and material                      |
| Admin charges       | \$233.62    | 2% of TCI                                            |
| Property Tax        | \$116.81    | 1% of TCI                                            |
| Insurance           | \$116.81    | 1% of TCI                                            |
| Capital Recovery    | \$937.30    |                                                      |
| Total Annual IC     | \$5,873.19  |                                                      |
|                     |             |                                                      |
| Total Annual Costs  |             |                                                      |
| (DAC + DIC)         | \$13,979.74 |                                                      |
|                     |             |                                                      |
| TAC/tons controlled | \$45,060.32 |                                                      |