#### SMAQMD BACT CLEARINGHOUSE

| CATEGOR    | Ү Туре:                    | BOILFR                                                                                                 | /HEATER < 5 MMBTU                                                         |                |  |
|------------|----------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|--|
| BACT Cate  | egory: MAJOR S             |                                                                                                        |                                                                           |                |  |
| BACT Det   | ermination Numb            | <b>er:</b> 327                                                                                         | BACT Determination Date:                                                  | 6/13/2023      |  |
|            |                            | Equipmer                                                                                               | nt Information                                                            |                |  |
| Permit Nu  | mber: N/A                  | Generic BACT Determina                                                                                 | ation                                                                     |                |  |
| Equipmer   | nt Description:            | BOILER                                                                                                 |                                                                           |                |  |
| Unit Size/ | Rating/Capacity:           | ≥ 75,000 BTU/HR TO                                                                                     | < 2.0 MMBTU/HR, FIRED ON NATURAL                                          | GAS            |  |
| Equipmer   | nt Location:               |                                                                                                        |                                                                           |                |  |
|            |                            |                                                                                                        |                                                                           |                |  |
|            |                            | BACT Determin                                                                                          | nation Information                                                        |                |  |
| District   | Contact: Jeff C            | -                                                                                                      | ) 207-1145 email: jquok@airquality.                                       | org            |  |
| ROCs       | Standard:                  | Good combustion practices                                                                              |                                                                           |                |  |
|            | Technology<br>Description: |                                                                                                        |                                                                           |                |  |
|            | Basis:                     | Achieved in Practice                                                                                   |                                                                           |                |  |
| NOx        | Standard:                  | See Description                                                                                        |                                                                           |                |  |
|            | Technology<br>Description: | Units rated < 0.7 MMBtu/hr: 20 ppmvd at 3% O2<br>Units rated ≥ 0.7 to < 2.0 MMBtu/hr: 9 ppmvd at 3% O2 |                                                                           |                |  |
|            | Basis:                     | Achieved in Practice                                                                                   |                                                                           |                |  |
| SOx        | Standard:                  | See Description                                                                                        |                                                                           |                |  |
| UUX        | Technology<br>Description: | PUC quality natural gas or pr<br>system (≤ 80 ppmv total sulf∟                                         | oduced gas treated using a continuously operating s<br>ır & ≤ 4 ppmv H2S) | sulfur removal |  |
|            | Basis:                     | Achieved in Practice                                                                                   |                                                                           |                |  |
| PM10       | Standard:                  | See Description                                                                                        |                                                                           |                |  |
|            | Technology<br>Description: | PUC quality natural gas or pr<br>system (≤ 80 ppmv total sulfu                                         | oduced gas treated using a continuously operating s<br>Ir & ≤ 4 ppmv H2S) | sulfur removal |  |
|            | Basis:                     | Achieved in Practice                                                                                   |                                                                           |                |  |
| PM2.5      | Standard:                  | See Description                                                                                        |                                                                           |                |  |
|            | Technology<br>Description: | PUC quality natural gas or pr<br>system (≤ 80 ppmv total sulfu                                         | oduced gas treated using a continuously operating s<br>Ir & ≤ 4 ppmv H2S) | sulfur removal |  |
|            | Basis:                     | Achieved in Practice                                                                                   |                                                                           |                |  |
| со         | Standard:                  | See Description                                                                                        |                                                                           |                |  |
|            | Technology<br>Description: |                                                                                                        | 50 ppmvd at 3% O2<br>Btu/hr: 100 ppmvd at 3% O2                           |                |  |
|            | Basis:                     | Achieved in Practice                                                                                   |                                                                           |                |  |
| LEAD       | Standard:                  |                                                                                                        |                                                                           |                |  |
|            | Technology                 |                                                                                                        |                                                                           |                |  |
|            | Description:               |                                                                                                        |                                                                           |                |  |
|            | Basis:                     |                                                                                                        |                                                                           |                |  |

#### SMAQMD BACT CLEARINGHOUSE

| CATEGOR                                                 | Ү Туре:                    | BOILE                                                | ER/HEATER < 5 MMBTU                                                          |           |  |
|---------------------------------------------------------|----------------------------|------------------------------------------------------|------------------------------------------------------------------------------|-----------|--|
| BACT Cate                                               | egory: Greater or          | equal to 75,000 BTU/I                                |                                                                              |           |  |
| BACT Determination Number: 328 BACT Determination Date: |                            |                                                      |                                                                              | 6/13/2023 |  |
|                                                         |                            | Equipm                                               | nent Information                                                             |           |  |
| Permit Nu                                               | mber: N/A                  | Generic BACT Determ                                  | nination                                                                     |           |  |
| Equipment Description: BOILER                           |                            |                                                      |                                                                              |           |  |
| Unit Size/                                              | Rating/Capacity:           | Major Source                                         |                                                                              |           |  |
| Equipmen                                                | nt Location:               |                                                      |                                                                              |           |  |
|                                                         |                            |                                                      |                                                                              |           |  |
|                                                         |                            | BACT Detern                                          | nination Information                                                         |           |  |
| District                                                | Contact: Jeff C            | uok Phone No.: (2                                    | 279) 207-1145 email: jquok@airquality.org                                    |           |  |
| ROCs                                                    | Standard:                  | Good combustion practice                             | es                                                                           |           |  |
|                                                         | Technology<br>Description: |                                                      |                                                                              |           |  |
|                                                         | Basis:                     | Achieved in Practice                                 |                                                                              |           |  |
| NOx                                                     | Standard:                  | See Description                                      |                                                                              |           |  |
| NOX                                                     | Technology<br>Description: | Units rated < 0.7 MMBtu/<br>Units rated ≥ 0.7 MMBtu/ | hr: 20 ppmvd @ 3% O2<br>hr to < 2.0 MMBtu/hr: 12 ppmvd @ 3% O2               |           |  |
|                                                         | Basis:                     | Achieved in Practice                                 |                                                                              |           |  |
| SOx                                                     | Standard:                  | Good combustion practice                             | es                                                                           |           |  |
| 30x                                                     | Technology<br>Description: |                                                      |                                                                              |           |  |
|                                                         | Basis:                     | Achieved in Practice                                 |                                                                              |           |  |
| PM10                                                    | Standard:                  | Good combustion practice                             | es                                                                           |           |  |
|                                                         | Technology<br>Description: |                                                      |                                                                              |           |  |
|                                                         | Basis:                     | Achieved in Practice                                 |                                                                              |           |  |
| PM2.5                                                   | Standard:                  | Good combustion practice                             | es                                                                           |           |  |
| 1 1012.0                                                | Technology                 |                                                      |                                                                              |           |  |
|                                                         | Description:               |                                                      |                                                                              |           |  |
|                                                         | Basis:                     | Achieved in Practice                                 |                                                                              |           |  |
| CO                                                      | Standard:                  | See Description                                      |                                                                              |           |  |
|                                                         | Technology<br>Description: | Units rated ≥ 0.4 MMBTU                              | J/hr: Good combustion practices<br>J/hr to < 2.0 MMBtu/hr: 400 ppmvd @ 3% O2 |           |  |
|                                                         | Basis:                     | Achieved in Practice                                 |                                                                              |           |  |
| LEAD                                                    | Standard:                  |                                                      |                                                                              |           |  |
|                                                         | Technology                 |                                                      |                                                                              |           |  |
|                                                         | Description:               |                                                      |                                                                              |           |  |
|                                                         | Basis:                     |                                                      |                                                                              |           |  |



#### **BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION**

|                                                                        | DETERMINATION NOS.:                                                                                                                 | 327 & 328    |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                        | DATE:                                                                                                                               | 06/13/2023   |
|                                                                        | ENGINEER:                                                                                                                           | Jeffrey Quok |
| Category/General Equip Description:<br>Equipment Specific Description: | Boiler/Heater – Natural gas or LPG<br>#327 – Boiler/heater greater or equal to 75,000<br>BTU/hr to less than 2.0 MMBTU/hr, fired on |              |
|                                                                        | natural gas<br>#328 – Boiler/heater greater or equal to 75,000<br>BTU/hr to less than 2.0 MMBTU/hr, fired on LPG                    |              |
| Equipment Size/Rating:                                                 | Major Source                                                                                                                        |              |
| Previous BACT Det. No.:                                                | N/A                                                                                                                                 |              |

This Best Available Control Technology (BACT) determination is for boilers/heaters greater than or equal to 75,000 BTU/hr and less than 2.0 MMBTU/hr, fired on natural gas or LPG at major sources. For purposes of this determination a boiler is any external combustion equipment fired with natural gas or LPG used to produce hot water or steam. Most boilers in this size range are used for providing general hot water to a large commercial or industrial facility or used for space heating.

Process heaters and make-up air heaters as defined below are not applicable to these BACT Determinations.

**Make-up Air Heater:** Any unit used to heat incoming air in order to maintain the temperature of a spray booth, container, room or other enclosed space to provide breathable air for a person who may be present during operation.

**Process Heater:** Any unit which transfers heat from combustion gases to process streams, excluding water or steam.

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 2 of 18

#### BACT/T-BACT ANALYSIS

#### A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT for boilers/heaters  $\geq$  75,000 BTU/hr and < 2.0 MMBTU/hr by the following agencies and air pollution control districts:

#### **US EPA**

#### BACT

Source: EPA RACT/BACT/LAER Clearinghouse (See Attachment A)

Two determinations were found for units fueled on natural gas in this size range.

RBLC ID # MI-0426: Through contact with the permitting agency it was found that the 1.0 MMBTU/hr boilers in this determination were part of a larger project for a PSD modification of a natural gas compressing station. The boilers proposed by the applicant and the standards included in this determination are based on manufacturer data and not through testing. Because the emission standards were not tested and verified in the field, the District does not consider these emission standards achieved in practice.

RBLC ID # SC-0179: The emission standards in this determination for VOC and PM are in units of pounds per hour, which indicate that the standards are based on the specific input rating of the boiler model evaluated and not general standards for this equipment type and size. The EPA clearinghouse also shows that the emission rates are not based on any specific control technology but on the use of natural gas as a fuel and good combustion practices. Other agencies list natural gas usage and good combustion practices as BACT for VOC and PM and, therefore, this determination will be assumed to be equivalent.

No determinations were found for units fueled on LPG for this size range.

#### RULE REQUIREMENTS: None

#### California Air Resource Board (CARB)

#### <u>BACT</u>

Source: <u>CARB BACT Clearinghouse</u> <u>CARB BACT Guidelines Search</u>

The only determinations staff found in the CARB BACT Clearinghouse that were not developed by one of the air districts examined later in this determination was SBCAPCD BACT Guidelines 2.1 and 2.2.

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 3 of 18

|           | Natural Gas or LPG Fired Units ≥ 0.075 and < 2.0 MMBTU/hr |                                                                                                                                                                                                                                                           |                                                  |  |  |
|-----------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Pollutant | Size<br>(MMBtu/hr)                                        | Standard/Control Technology                                                                                                                                                                                                                               | Source                                           |  |  |
| voc       | All                                                       | Good combustion practices                                                                                                                                                                                                                                 | SBCAPCD BACT<br>2.1 (6/14/17) & 2.2<br>(9/28/21) |  |  |
|           | ≤ 0.400                                                   | 20 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                                                             | SBCAPCD BACT<br>2.1 (6/14/17)                    |  |  |
| NOx       | > 0.400 & < 1.000                                         | 20 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                                                             | SBCAPCD BACT<br>2.2 (9/28/21)                    |  |  |
|           | ≥ 1.000                                                   | 12 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                                                             | SBCAPCD BACT<br>2.2 (9/28/21)                    |  |  |
| SOx       | All                                                       | <ol> <li>Use PUC quality natural gas (A), or<br/>produced gas treated using a<br/>continuously operating sulfur removal<br/>system (≤ 80 ppmv total sulfur &amp; ≤ 4<br/>ppmv H<sub>2</sub>S), and</li> <li>Prepare a Fuel Gas Sulfur Plan (B)</li> </ol> | SBCAPCD BACT<br>2.1 (6/14/17) & 2.2<br>(9/28/21) |  |  |
| PM10      | All                                                       | <ol> <li>Use PUC quality natural gas (A), or<br/>produced gas treated using a<br/>continuously operating sulfur removal<br/>system (≤ 80 ppmv total sulfur &amp; ≤ 4<br/>ppmv H<sub>2</sub>S), and</li> <li>Prepare a Fuel Gas Sulfur Plan (B)</li> </ol> | SBCAPCD BACT<br>2.1 (6/14/17) & 2.2<br>(9/28/21) |  |  |
| PM2.5     | All                                                       | <ol> <li>Use PUC quality natural gas (A), or<br/>produced gas treated using a<br/>continuously operating sulfur removal<br/>system (≤ 80 ppmv total sulfur &amp; ≤ 4<br/>ppmv H<sub>2</sub>S), and</li> <li>Prepare a Fuel Gas Sulfur Plan (B)</li> </ol> | SBCAPCD BACT<br>2.1 (6/14/17) & 2.2<br>(9/28/21) |  |  |
| <u> </u>  | ≤ 0.400                                                   | 50 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                                                             | SBCAPCD BACT<br>2.1 (6/14/17)                    |  |  |
| CO        | > 0.400                                                   | 100 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                                                            | SBCAPCD BACT<br>2.2 (6/14/17)                    |  |  |

(A) PUC natural gas stands for California Public Utility Commission Quality Natural Gas. California requires that PUC Gas contain no more than 0.25 grains of hydrogen sulfide and no more than 5 grains of total sulfur per 100 scf of gas.

(B) A Fuel Gas Sulfur Plan is a plan that the owners of the equipment prepare outlining how sulfur will be removed to achieve the required standard. This is not required if the unit is fired on PUC natural gas.

#### RULE REQUIREMENTS: None

#### BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 4 of 18

#### Sacramento Metropolitan AQMD

#### **BACT**

Source: <u>SMAQMD BACT #299 – Boilers ≥ 0.075 and < 2 MMBtu/hr fired on Natural Gas</u> (2/23/22)

| Natural Gas-Fired Units ≥ 0.075 and < 2.0 MMBTU/hr – Small Emitter Category |                                |                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pollutant                                                                   | nt Unit Size and Type Standard |                                                                                                                                                                                                                   |  |
| voc                                                                         | All                            | Good combustion practices                                                                                                                                                                                         |  |
| NOx                                                                         | Units rated < 1.0 MMBtu/hr     | 20 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                     |  |
| NOX                                                                         | Units rated ≥ 1.0 MMBtu/hr     | 12 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                     |  |
| SOx                                                                         | All                            | PUC quality natural gas or produced gas treated using a continuously operating sulfur removal system ( $\leq 80$ ppmv total sulfur & $\leq 4$ ppmv H <sub>2</sub> S)                                              |  |
| PM10                                                                        | All                            | PUC quality natural gas or produced gas<br>treated using a continuously operating sulfur<br>removal system ( $\leq 80$ ppmv total sulfur & $\leq 4$<br>ppmv H <sub>2</sub> S) outlined in a Fuel Gas Sulfur Plan. |  |
| PM2.5                                                                       | All                            | PUC quality natural gas or produced gas<br>treated using a continuously operating sulfur<br>removal system ( $\leq 80$ ppmv total sulfur & $\leq 4$<br>ppmv H <sub>2</sub> S) outlined in a Fuel Gas Sulfur Plan. |  |
| <u> </u>                                                                    | Units rated < 0.4 MMBtu/hr     | 50 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                     |  |
| со                                                                          | Units rated ≥ 0.4 MMBtu/hr     | 100 ppmvd at 3% O <sub>2</sub>                                                                                                                                                                                    |  |

#### Source: <u>SMAQMD BACT #300 – Boilers ≥ 0.075 and < 2 MMBtu/hr fired on LPG (2/3/22)</u>

| LPG-Fired Units ≥ 0.075 and < 2.0 MMBtu/hr – Small Emitter Category |                                   |                              |  |
|---------------------------------------------------------------------|-----------------------------------|------------------------------|--|
| Pollutant Unit Type Standard                                        |                                   | Standard                     |  |
| voc                                                                 | All Good combustion practices     |                              |  |
| Nov                                                                 | Units rated < 0.4 MMBtu/hr        | 77 ppmvd @ 3% O2             |  |
| NOx                                                                 | Units rated ≥ 0.4 MMBtu/hr        | 30 ppmvd @ 3% O <sub>2</sub> |  |
| SOx                                                                 | All                               | Good combustion practices    |  |
| PM10                                                                | M10 All Good combustion practices |                              |  |
| PM2.5                                                               | All                               | Good combustion practices    |  |

| LPG-Fired Units ≥ 0.075 and < 2.0 MMBtu/hr – Small Emitter Category |                            |                               |  |  |
|---------------------------------------------------------------------|----------------------------|-------------------------------|--|--|
| Pollutant Unit Type Standard                                        |                            |                               |  |  |
| со                                                                  | Units rated < 0.4 MMBTU/hr | Good combustion practices     |  |  |
|                                                                     | Units rated ≥ 0.4 MMBTU/hr | 400 ppmvd @ 3% O <sub>2</sub> |  |  |

#### RULE REQIREMENTS:

Rule 414 – Water Heaters, Boilers and Process Heaters Rated Less Than 1,000,000 BTU Per Hour (Amended 10/25/2018)

This rule applies to any person who manufactures, distributes, offers for sale, sells, or installs any type of water heater, boiler or process heater with a rated heat input capacity less than 1.0 MMBTU/hr, fired with gaseous or nongaseous fuels. Units must be certified to meet the emission limits by the SMAQMD or SCAQMD. **LPG-fired units are exempt from this rule.** 

No person shall distribute, offer for sale, sell, or install any unit that does not meet the following standards:

| Heat Input Range and Type                                      | NOx Limit Nanograms per<br>Joule of Heat Output<br>(ppmv @ 3% O <sub>2</sub> )* | CO Limit<br>(ppmv @ 3% O <sub>2</sub> ) |
|----------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|
| <u>75,000 to &lt; 400,000 Btu/hr</u><br>Pool/Spa<br>All others | 40 (55)<br>14 (20)                                                              | No Limit<br>No Limit                    |
| 400,000 to 1 million Btu/hr<br>All Types                       | 14 (20)                                                                         | 400                                     |

\* Where limits are shown in units of both nanograms per joule of heat output and ppmv at 3% oxygen, compliance can be demonstrated using either limit.

<u>Rule 411 – NOx from Boilers, Process Heaters and Steam Generators (Amended 8/23/2007)</u>

This rule applies to units fired on gaseous or nongaseous fuels with a rated heat input capacity of 1 million Btu per hour or greater.

No unit shall exceed the following limits:

| Unit Size/Description                      | NOx Limit     | CO Limit      |
|--------------------------------------------|---------------|---------------|
| mmBtu/hr Input                             | ppmvd @ 3% O₂ | ppmvd @ 3% O₂ |
| Greater than or equal to 1 and less than 5 | 30            | 400           |

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 6 of 18

#### South Coast AQMD

#### **BACT**

SCAQMD BACT Guidelines do not contain a determination for boilers/heaters rated 2 MMBTU/hr or less, because these units are not required to obtain a written permit, pursuant to SCAQMD Rule 219.

#### <u>SCAQMD Rule 219 – Equipment Not Requiring a Written Permit Pursuant to Regulation II</u> (Amended 1/7/2022)

**Section (b)(2)**: Boilers, process heaters, or any combustion equipment that has a rated maximum heat input capacity of 2,000,000 Btu per hour (gross) or less and are equipped to be heated exclusively with natural gas, methanol, liquefied petroleum gas, or any combination thereof; or diesel fueled boilers that have a rated maximum heat input capacity of 2,000,000 Btu per hour or less, are fueled exclusively with diesel #2 fuel, and are located more than 4,000 feet above sea level or more than 15 miles offshore from the mainland, and where the maximum NOx emission output of the equipment is less than one pound per day and uses less than 50 gallons of fuel per day, and have been in operation prior to May 3, 2013 provided a filing pursuant to Rule 222 is submitted to the Executive Officer. This exemption does not apply to internal combustion engines or turbines. This exemption does not apply whenever there are emissions other than products of combustion, except for food ovens with a rated maximum heat input capacity of 2,000,000 Btu/hour or less, that are fired exclusively on natural gas and where the process VOC emissions are less than one pound per day and provided a filing pursuant to Rule 222 is submitted to the Executive Officer.

#### **RULE REQUIREMENTS:**

Reg XI, Rule 1146.2 – Emissions of Oxides of Nitrogen from Large Water Heaters and Small Boilers and Process Heaters (Amended 12/7/2018)

This rule is applicable to all natural gas-fired units that have a rated heat input capacity less than or equal to 2,000,000 Btu per hour. Units must be certified to meet the emission limits by the SCAQMD.

| Category                                      | NOx Limit                                                                | CO Limit                      |
|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------|
| Units ≤ 0.4 MMBTU/hr<br>(except pool heaters) | 14 nanograms per joule of heat output<br>(20 ppmvd @ 3% O <sub>2</sub> ) | No standard                   |
| Pool heaters ≤ 0.4<br>MMBTU/hr                | 40 nanograms per joule of heat output<br>(55 ppmvd @ 3% O <sub>2</sub> ) | No standard                   |
| Units > 0.4 and ≤ 2.0<br>MMBTU/hr             | 14 nanograms per joule of heat output<br>(20 ppmvd @ 3% O <sub>2</sub> ) | 400 ppmvd @ 3% O <sub>2</sub> |

New units must meet the following standards:

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 7 of 18

#### San Joaquin Valley Unified APCD

#### **BACT**

SJVUAPCD BACT Guidelines do not contain a determination for boilers rated 5 MMBTU/hr or less, because these units are not required to obtain a written permit, pursuant to SJUVAPCD Rule 2020.

#### SJVUAPCD Rule 2020 – Exemptions (Amended December 18, 2014)

**Section 6.1.1**: No Authority to Construct or Permit to Operate shall be required for steam generators, steam superheaters, water boilers, steam cleaners, and closed indirect heat transfer systems that have a maximum input heat rating of 5,000,000 Btu per hour (gross) or less and is equipped to be fired exclusively with natural gas, liquefied petroleum gas, or any combination of the two.

#### RULE REQUIREMENTS:

<u>SJVUAPCD Rule 4308 – Boilers, Steam Generators, and Process Heaters – 0.075</u> MMBtu/hr to less than 2.0 MMBtu/hr (Amended 11/14/2013)

This rule applies to any person who supplies, sells, offers for sale, installs, or solicits the installation of any boiler, steam generator, process heater or water heater with a rated heat input capacity of greater than or equal to 75,000 British thermal units per hour and less than 2,000,000 British thermal units per hour.

A person shall not supply, sell, offer for sale, install, or solicit the installation of any boiler, process heater or water heater unless it has been certified pursuant to the standards in the table below.

| Type and Size of Unit, in MMBtu/hr                 | NOx Limit<br>Ib/MMBtu of heat input (ppmvd @ 3% O₂) |                                  |  |
|----------------------------------------------------|-----------------------------------------------------|----------------------------------|--|
| Type and Size of Onit, in Miniblu/in               | PUC Natural<br>Gas*                                 | Non-PUC Natural<br>Gas or Liquid |  |
| Units $\geq$ 0.075 and $\leq$ 0.4, except as below | 0.024 (20)                                          | 0.093 (77)                       |  |
| Units > 0.4 and < 2.0, except as below             | 0.024 (20)                                          | 0.036 (30)                       |  |
| Instantaneous water heaters ≥ 0.075 and ≤ 0.4      | 0.024 (20)                                          | 0.093 (77)                       |  |
| Instantaneous water heaters > 0.4 and < 2.0        | 0.024 (20)                                          | 0.093 (77)                       |  |
| Pool heaters $\geq 0.075$ and $\leq 0.4$           | 0.068 (55)                                          | 0.093 (77)                       |  |
| Pool heaters > 0.4 and < 2.0                       | 0.024 (20)                                          | 0.036 (30)                       |  |

\* PUC Natural Gas stands for California Public Utility Commission Quality Natural Gas

Units with a rating of  $\ge$  0.4 MMBtu/hr and < 2.0 MMBtu/hr must meet a standard of 400 ppmvd @ 3% O<sub>2</sub> for CO.

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 8 of 18

#### San Diego County APCD

#### <u>BACT</u>

SDCAPCD BACT Guidelines do not contain a determination for boilers/heaters rated 2 MMBtu/hr or less fired exclusively with natural gas and/or liquefied petroleum gas, because these units are not required to obtain a written permit, pursuant to SDCAPCD Rule 11.

<u>SDCAPCD Rule 11 – Exemptions from Rule 10 Permit Requirements (Amended 10/13/2022)</u>

**Section (d)(2)(iv)**: Any boiler, process heater, steam generator, or water heater with a manufacturer's maximum gross heat input rating of:

- (A) less than 1 million BTU per hour fired with any fuel, or
- (B) 2 million BTU per hour or less fired exclusively with natural gas and/or liquefied petroleum gas.

#### **RULE REQUIREMENTS:**

Regulation 4, Rule 69.2.1 – Small Boilers, Process Heaters, and Steam Generators (Adopted 7/8/2020)

This rule applies to any person who manufactures, sells, offers for sale or distributes for use within San Diego County, or installs within San Diego County a new unit (boiler, process heater, or steam generator) with a heat input rating from 75,000 Btu per hour to 2 million Btu per hour.

Effective 7/1/2021 no person shall manufacture, distribute, sell, offer for sale, or install within San Diego County any new unit that exceeds the following emission levels:

| Fuel                          | Unit Type & Heat Input Rating<br>BTU/hr | NOx Limit<br>ppmvd @ 3% O₂ | CO Limit<br>ppmvd @ 3% O <sub>2</sub> |
|-------------------------------|-----------------------------------------|----------------------------|---------------------------------------|
| Natural Gas                   | 75,000 to 400,000 Pool Heaters          | 55                         | N/A                                   |
| Natural Gas                   | 75,000 to 400,000 All Other Units       | 20                         | N/A                                   |
| Natural Gas                   | > 400,000 to 2,000,000 All Units        | 20                         | 400                                   |
| Non PUC Gas<br>or Liquid Fuel | 75,000 to 400,000 All Units             | 77                         | N/A                                   |
| Non PUC Gas<br>or Liquid Fuel | > 400,000 to 2,000,000 All Units        | 30                         | 400                                   |

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 9 of 18

#### Bay Area AQMD

#### **BACT**

BAAQMD BACT Guidelines do not contain a determination for boilers/heaters rated 10 MMBTU/hr or less fired exclusively on natural gas or LPG, because units rated less than 10 MMBTU/hr fired exclusively on natural gas or LPG are not required to obtain a permit, pursuant to BAAQMD Rule 2-1.

BAAQMD Regulation 2, Rule 1 – General Requirements (Amended 12/6/2017)

**Section 2-1-114**: Boilers, heaters, steam generators, duct burners, and similar combustion equipment with less than 10 million BTU per hour rated heat input if fired exclusively with natural gas (including compressed natural gas), liquefied petroleum gas (e.g. propane, butane, isobutene, propylene, butylene, and their mixtures), or any combination thereof are exempt from being required to obtain an Authority to Construct or Permit to Operate.

#### **RULE REQUIREMENTS:**

BAAQMD Regulation 9, Rule 6 – Nitrogen Oxides Emissions from Natural Gas-Fired Water Heaters (Amended 11/7/2007)

This rule applies to natural gas-fired boilers and water heaters with a rated heat input capacity less than or equal to 2,000,000 BTU/hr. Units must be certified to meet the emission limits by the BAAQMD or SCAQMD.

| Rated Heat Input<br>Capacity<br>Btu/hr | Type of Unit                     | NOx Limit<br>nanograms per joule of heat<br>output (ppm @ 3% O₂) |
|----------------------------------------|----------------------------------|------------------------------------------------------------------|
| ≤ 75,000                               | Mobile Home Water Heaters        | 40                                                               |
| ≤ 73,000                               | Other Storage Tank Water Heaters | 10                                                               |
| 75,001 to 400,000                      | Mobile Home Water Heaters        | 40                                                               |
|                                        | Pool/Spa Heaters                 | Exempt                                                           |
|                                        | All Other                        | 14                                                               |
|                                        | Mobile Home Water Heaters        | 40                                                               |
| 400,001 to 2,000,000                   | Pool/Spa Heaters                 | 14 (20)                                                          |
|                                        | All Other                        | 14 (20)                                                          |

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 10 of 18

#### Summary of Achieved in Practice Control Technologies

The following control technologies have been identified as achieved in practice and are ranked based on stringency:

#### UNIT CONVERSION FOR NOx & CO

Depending on the agency, NOx and CO emission standards were listed in either ppmvd @  $3\% O_2$  or in nanograms per joule of heat output. For purposes of comparison all nanograms per joule of heat output standards have been converted to ppmvd @  $3\% O_2$ .

#### NOx AND CO ACHIVED IN PRACTICE STANDARDS

For boilers in the size range covered by this determination, burner design is the predominant method to control NOx emissions. Low-NOx burners typically lower the flame temperature and require greater excess air levels which can cause increases in CO emissions. Therefore, because these pollutants can be dependent on one another, standards will be ranked together. Due to the non-attainment status in Sacramento County, an emphasis will be placed on NOx emissions when ranking emission standards. Previously, the industry standard for units in this range was to obtain SCAQMD certification for compliance with their Rule 1146.2 – Emissions of Oxides of Nitrogen from Large Water Heaters and Small Boilers and Process Heaters. As shown below, the NOx and CO standards in the SBCAPCD BACT Guidelines are more stringent than SCAQMD certification.

SBCAPCD BACT Guidelines 2.1 and 2.2 apply to units fueled by liquid and/or gaseous and/or solid fossil fuels. SBCAPCD Rule 802 requires BACT to be applied to new sources that emit 25 lbs/day or more of any nonattainment pollutant or its precursors (except CO). The rule also has an exemption for sources from offset requirements as long as applicants meet the specified conditions, one of which is to apply BACT to the equipment or process. This rule also sets an offset threshold of 25 tons/year for nonattainment pollutants and precursors (except CO and PM2.5). As of yet, for the size range covered by this determination, the SBCAPCD guidelines have only been applied to units at a single source in order for the source to be exempt from offset requirements. Specifically, the 12 ppmvd NOx standard BACT was applied to three 1.5 MMBtu/hr natural gas-fired boilers in a stacked configuration (manifolded together).

In contrast, the SMAQMD requires BACT to be applied to all new sources that emit over 0 lbs/day (or 0.49 lbs/day due to rounding) of NOx. The SMAQMD permits all units with a maximum heat input of 1.0 MMBtu/hr or greater or multiple units used in the same process whose combined maximum heat input rating is 1.0 MMBtu/hr or greater. Whereas the SBCAPCD exempts external combustion equipment with a maximum heat input rating less than or equal to 2.0 MMBTU/hr. Because of the low permitting and BACT thresholds, if adopted, the 12 ppmvd NOx limit would be applied to many more boilers including small sources where the only permitted unit may be a space heating boiler between 1.0 and 2.0 MMBtu/hr. Because of this discrepancy staff reviewed current new products being offered by major boiler manufactures for natural gas-fired units in this range. Staff found that several manufacturers have natural gas-fired units that span the size range between 1.0 and 2.0 MMBtu/hr that are guaranteed to meet a NOx standard of 12 ppmvd at 3% O<sub>2</sub>. Based on

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 11 of 18

this review, the SMAQMD considers units meeting the 12 ppmvd NOx limit in this size range to be readily available and this standard to be achieved in practice.

Even though many of the units that guarantee the 12 ppmvd standard for NOx can be fueled by either natural gas or LPG, the guaranteed NOx standard only applies to the unit when it is fueled by natural gas. Staff has been unable to find any units in this size range fueled by LPG that is guaranteed to meet anything beyond the 30 ppmvd at 3% O<sub>2</sub> standard that was required by BACT determination #219. The BACT Guidelines from SBCAPCD apply to LPG fired unit as well. When asked if the standard had been applied to any LPG-fired units, SBCAPCD responded saying that it had not. They also stated that if an applicant was proposing an LPG-fired unit that was required to meet BACT, they would require the applicant to propose a natural gas-fired unit instead. The SMAQMD currently has active permits with businesses that operate propane/LPG-fired boilers in areas of Sacramento County that are not served by pipeline natural gas. Therefore, the SMAQMD does not consider the SBCAPCD BACT Guidelines 2.1 and 2.2 to be achieved in practice for Propane/LPG-fired units and because natural gas is not available to areas of Sacramento County it is not feasible to require all units to use natural gas as a fuel.

#### <u>NOx AND CO FOR NATURAL GAS-FIRED UNITS RATED ≥ 75,000 and < 400,000</u> <u>BTU/HR</u>

|      | Achieved in Practice Standards for NOx & CO for Natural Gas-Fired Units<br>Rated ≥ 75,000 and < 400,000 BTU/hr |                                     |                                    |                                                |
|------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------------------------|
|      |                                                                                                                | Standard/Control                    |                                    |                                                |
| Rank | Unit Type                                                                                                      | NOx<br>(ppmvd @ 3% O <sub>2</sub> ) | CO<br>(ppmvd @ 3% O <sub>2</sub> ) | Source                                         |
| 1    | All units                                                                                                      | 20                                  | 50                                 | SBCAPCD BACT<br>2.1 (2017)                     |
| 2    | Units rated < 1.0<br>MMBtu/hr (NOx)<br>Units rated < 0.4<br>MMBtu/hr (CO)                                      | 20                                  | 50                                 | SMAQMD BACT<br>299 (2022)                      |
| 3    | Pool heaters                                                                                                   | 55                                  | No standard                        | SCAQMD Rule                                    |
| 5    | All other units                                                                                                | 20                                  | No standard                        | 1146.2 (2018)                                  |
|      | Units fueled on non-<br>PUC gas                                                                                | 77                                  | No standard                        | SJVAPCD Rule                                   |
| 4    | Pool Heaters Fueled<br>on PUC Gas                                                                              | 55                                  | No standard                        | 4308 (2013) &<br>SDCAPCD Rule<br>69.2.1 (2020) |
|      | All other units                                                                                                | 20                                  | No standard                        | 09.2.1 (2020)                                  |
|      | Mobile home water heaters                                                                                      | 55                                  | No standard                        |                                                |
| 5    | Pool/spa heaters                                                                                               | Exempt                              | Exempt                             | BAAQMD Reg. 9<br>Rule 6 (2007)                 |
|      | All other units (A)                                                                                            | 20                                  | No standard                        |                                                |

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 12 of 18

(A) Units with a maximum heat input rating of exactly 75,000 Btu/hr have a lower NOx emission standard of 10 ng/J (15 ppmvd @ 3% O<sub>2</sub>).

#### NOx AND CO FOR NATURAL GAS-FIRED UNITS RATED ≥ 0.4 and < 2.0 MMBTU/HR

|      | Achieved in Practice Standards for NOx & CO for Natural Gas-Fired Units<br>Rated ≥ 400,000 and < 2,000,000 BTU/hr |                                     |                                    |                              |
|------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------|
|      | Standard/Control                                                                                                  |                                     | Source                             |                              |
| Rank | Unit Type                                                                                                         | NOx<br>(ppmvd @ 3% O <sub>2</sub> ) | CO<br>(ppmvd @ 3% O <sub>2</sub> ) |                              |
| 1    | < 1.000 MMBtu/hr (A)                                                                                              | 20                                  | 100                                | SMAQMD BACT<br>299 (2022) &  |
|      | ≥ 1.000 MMBtu/hr                                                                                                  | 12                                  | 100                                | SBCAPCD BACT<br>2.2 (2017)   |
| 2    | All units                                                                                                         | 20                                  | 400                                | SCAQMD Rule<br>1146.2 (2018) |
|      | All units fueled on non-<br>PUC gas                                                                               | 30                                  | 400                                | SDCAPCD Rule                 |
| 3    | All units fueled on PUC gas                                                                                       | 20                                  | 400                                | 69.2.1 (2020)                |
|      | Instantaneous water<br>heaters fueled on non-<br>PUC gas                                                          | 77                                  | 400                                |                              |
| 4    | All other units fueled on non-PUC gas                                                                             | 30                                  | 400                                | SJVAPCD Rule<br>4308 (2013)  |
|      | All units fueled on PUC gas                                                                                       | 20                                  | 400                                |                              |
| 5    | Mobile home water heaters                                                                                         | 55                                  | No standard                        | BAAQMD Reg. 9                |
| -    | All other units                                                                                                   | 20                                  | No standard                        | Rule 6 (2007)                |

(A) Units with a maximum heat input rating of exactly 400,000 Btu/hr has a lower CO standard of 50 ppmvd at 3% O<sub>2</sub> for both SMAQMD and SBAPCD BACTs.

#### NOx AND CO LPG-FIRED UNITS RATED ≥ 75,000 and < 400,000 BTU/HR

| Achieved in Practice Standards for NOx & CO for LPG-Fired Units<br>Rated ≥ 75,000 and < 400,000 BTU/hr |           |                                     |                                    | d Units                   |
|--------------------------------------------------------------------------------------------------------|-----------|-------------------------------------|------------------------------------|---------------------------|
|                                                                                                        |           | Standard/Control                    |                                    |                           |
| Rank                                                                                                   | Unit Type | NOx<br>(ppmvd @ 3% O <sub>2</sub> ) | CO<br>(ppmvd @ 3% O <sub>2</sub> ) | Source                    |
| 1                                                                                                      | All units | 77                                  | Good combustion<br>practices       | SMAQMD BACT<br>300 (2022) |

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 13 of 18

|                | Achieved in Practice Standards for NOx & CO for LPG-Fired Units<br>Rated ≥ 75,000 and < 400,000 BTU/hr |                                     |                                    |                                                                |  |
|----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|----------------------------------------------------------------|--|
|                |                                                                                                        | Standard                            | d/Control                          |                                                                |  |
| Rank Unit Type |                                                                                                        | NOx<br>(ppmvd @ 3% O <sub>2</sub> ) | CO<br>(ppmvd @ 3% O <sub>2</sub> ) | Source                                                         |  |
| 2              | All units                                                                                              | 77                                  | No standard                        | SJVAPCD Rule<br>4308 (2013) &<br>SDCAPCD Rule<br>69.2.1 (2020) |  |
| 3              | All units                                                                                              | No standard                         | No standard                        | SCAQMD &<br>BAAQMD                                             |  |

#### NOx and CO FOR LPG-FIRED UNITS RATED ≥ 0.4 and < 2.0 MMBTU/HR

|                | Achieved in P                  | ractice Standards for N<br>Rated ≥ 400,000 and < |                                    | d Units                                                      |
|----------------|--------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------------------------------|
|                |                                | Standard/Control                                 |                                    |                                                              |
| Rank Unit Type |                                | NOx<br>(ppmvd @ 3% O <sub>2</sub> )              | CO<br>(ppmvd @ 3% O <sub>2</sub> ) | Source                                                       |
| 1              | All units                      | 30                                               | 400                                | SMAQMD BACT<br>300 (2022) &<br>SDCAPCD Rule<br>69.2.1 (2020) |
| 2              | Instantaneous<br>water heaters | 77                                               | 400                                | SJVAPCD Rule<br>4308 (2013) &                                |
| _              | All other units                | 30                                               | 400                                | SDCAPCD Rule<br>69.2.1 (2020)                                |
| 3              | All units                      | No standard                                      | No standard                        | SCAQMD &<br>BAAQMD                                           |

#### VOC FOR NATURAL GAS AND LPG-FIRED UNITS

The only standard set for VOC for this category of equipment is the use of good combustion practices by last SMAQMD BACT Determination, CARB BACT Clearinghouse (SBCAPCD), and EPA BACT Clearinghouse.

#### SOx AND PM FOR NATURAL GAS-FIRED UNITS

The SBCAPCD BACT Guidelines list the same standard for SOx, PM10 and PM2.5, which relates to burning only low sulfur fuel. Sulfur content in fuels does contribute to particulate emissions through the formation of sulfates. A small portion of sulfates are directly emitted from combustion, but most are formed in the atmosphere as a biproduct of sulfur dioxide emissions. Therefore, a reduction in the sulfur content of the fuel would lead to a reduction in particulate matter and will be considered achieved in practice as a standard for particulate matter. Because the achieved in practice per agency for SOx, PM10, and PM2.5 for natural gas-fired units are equivalent they have been combined into one section for brevity.

| Achieve | Achieved in Practice Standards for SOx for Natural Gas-Fired Units Rated ≥ 75,000 and < 2,000,000 BTU/hr                                                                                                 |                                                              |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
| Rank    | Standard/Control                                                                                                                                                                                         | Source                                                       |  |  |
| 1       | PUC quality natural gas or produced gas treated using a continuously operating sulfur removal system ( $\leq$ 80 ppmv total sulfur & $\leq$ 4 ppmv H <sub>2</sub> S) outlined in a Fuel Gas Sulfur Plan. | SMAQMD BACT 299<br>(2022) & SBCAPCD<br>BACT 2.1 & 2.2 (2017) |  |  |
| 2       | No standards                                                                                                                                                                                             | SCAQMD, SJVAPCD,<br>SDCAPCD, BAAQMD                          |  |  |

(A) PUC Natural Gas stands for California Public Utility Commission Quality Natural Gas. California requires that PUC Gas contain no more than 0.25 grains of hydrogen sulfide and no more than 5 grains of total sulfur per 100 scf of gas.

#### SOx AND PM FOR LPG-FIRED UNITS

As stated previously the SBCAPCD BACT Guidelines 2.1 and 2.2 are not considered achieved in practice for LPG-fired units and will not be considered in this comparison. Because the achieved in practice per agency for SOx, PM10, and PM2.5 for natural gas-fired units are equivalent they have been combined into one section for brevity.

| Achiev | Achieved in Practice Standards for SOx, PM10, and PM2.5 for LPG-Fired Units Rated ≥ 75,000 and < 2,000,000 BTU/hr |                                     |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| Rank   | Standard/Control                                                                                                  | Source                              |  |  |
| 1      | Good combustion practices                                                                                         | SMAQMD BACT 299<br>(2022)           |  |  |
| 2      | No standards                                                                                                      | SMAQMD, SJVAPCD,<br>SDCAPCD, BAAQMD |  |  |

#### B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

#### Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

| Pollutant | Technologically Feasible Alternatives                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------|
| VOC       | No other technologically feasible option identified                                                       |
| NOx       | 1.Selective Catalytic Reduction (5 ppm)<br>2.Ultra Low NOx Burner (9 ppm for natural gas, 12 ppm for LPG) |

| Pollutant | Technologically Feasible Alternatives               |
|-----------|-----------------------------------------------------|
| SOx       | No other technologically feasible option identified |
| PM10      | No other technologically feasible option identified |
| PM2.5     | No other technologically feasible option identified |
| со        | No other technologically feasible option identified |

#### **Cost Effective Determination:**

After identifying the technologically feasible control options, a cost analysis is performed to take into consideration economic impacts for all technologically feasible controls identified.

#### Maximum Cost per Ton of Air Pollutants Controlled

1. A control technology is considered to be cost-effective if the cost of controlling one ton of that air pollutant is less than the limits specified below:

| <u>Pollutant</u> | <u>Maximum Cost (\$/ton)</u> |
|------------------|------------------------------|
| VOC              | 23,600                       |
| NO <sub>X</sub>  | 32,900                       |
| PM10             | 11,400                       |
| SOx              | 18,300                       |
| CO               | 300                          |

#### Cost Effectiveness Analysis Summary

This BACT determination will perform a cost effectiveness analysis in accordance with the updated EPA OAQPS Air Pollution Control Cost Manual. The electricity (11.24 cents/kWh) rate was based on an industrial application as approved by the District. The life of the equipment was based on the EPA cost manual recommendation. The interest rate was based on the previous 6-month average interest rate on United States Treasury Securities (based on the life of the equipment) and addition of two percentage points and rounding up to the next higher integer rate. The labor (Occupation Code 51-8099: Plant and System Operators - Other) and maintenance (Occupation Code 49-2094: electrical and electronics commercial and industrial equipment repairers) rates were based on data from the Bureau of Labor Statistics.

#### SCR:

As shown in Attachment B, the cost effectiveness for the add on SCR system to control NOx to a 5 ppm level was calculated to be **\$612,483/ton** for a 0.075 MMBtu/hr boiler and **\$134,154/ton** for a 2 MMBtu/hr boiler. Since BACT for a 2 MMBtu/hr boiler is never triggered for CO (14.2 lbs/day max) even with a boiler meeting Rule 411 limits (400 ppmv CO at 3% O2), the cost for the added CO control was not analyzed. The following basic parameters were used in the analysis.

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 16 of 18

For a 0.075 MMBtu/hr boiler:

NOx Control Level = 5 ppmv NOx Baseline Level = 20 ppmv Boiler Rating = 0.075 MMBtu/hr Equipment Life = 30 years Total Capital Investment = \$28,627 Direct Annual Cost = \$195 per year Indirect Annual Cost = \$3,489 per year Total Annual Cost = \$3,638 per year

#### Cost of NOx Removal = \$612,483 per ton reduced

Therefore, add on SCR system is considered not cost effective and is eliminated. Natural gas costs and LPG costs differences are negligible in determining cost effectiveness due to the extremely high cost per ton reduced results. Therefore, both natural gas and LPG fuel would not be cost effective.

For a 2 MMBtu/hr boiler:

NOx Control Level = 5 ppmv NOx Baseline Level = 20 ppmv Boiler Rating = 2 MMBtu/hr Equipment Life = 30 years Total Capital Investment = \$272,817 Direct Annual Cost = \$3,099 per year Indirect Annual Cost = \$23,209 per year Total Annual Cost = \$26,308 per year NOx Removed = 0.2 tons per year

#### Cost of NOx Removal = \$134,154 per ton reduced

Therefore, add on SCR system is considered not cost effective and is eliminated.

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 17 of 18

#### Ultra Low NOx Burner (ULNB):

California Boiler was contacted, and they provide the lowest NOx ppm standard for natural gas and LPG boilers between 0.075-2 MMBtu/hr can meet (See Attachment C). California Boiler explained that for 0.7-2 MMBtu/hr natural gas boilers 9 ppm NOx is the lowest achievable NOx at these levels by using a "NP2" metal mesh element type burner. For 0.7-2 MMBtu/hr LPG boilers, 12 ppm NOx is the lowest achievable NOx at these levels by using a "NP2" metal mesh element type burner. For 0.7-2 MMBtu/hr LPG boilers, 12 ppm NOx is the lowest achievable NOx at these levels by using a "NP2" metal mesh element type burner. For both natural gas and LPG boilers below 0.7 MMBtu/hr, 20 ppm NOx is the lowest achievable NOx.

Since California Boiler can currently provide boilers in the 0.7-2 MMBtu/hr size range that meet 9 ppm NOx for natural gas and 12 ppm NOx for LPG, the 9 ppm NOx limit for natural gas and 12 ppm NOx for LPG will be considered achieved in practice.

#### C. <u>SELECTION OF BACT</u>:

Based on the above analysis, BACT for VOC, NOx, SOx, PM10, PM2.5 and CO will be the most stringent standards of what is currently achieved in practice.

| BACT DETERMINATION #327 – BOILERS/HEATERS RATED GREATER THAN OR EQUAL      | то |
|----------------------------------------------------------------------------|----|
| 75,000 BTU/HR TO LESS THAN 2.0 MMBTU/HR, FIRED ON NATURAL GAS - MAJOR SOUF | CE |
| CATEGORY                                                                   |    |

| Pollutant | Standard                                                                                                                                                                                                 | Source                                        |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| VOC       | Good combustion practices                                                                                                                                                                                | SMAQMD, SBCAPCD                               |
| NOx       | Units rated < 0.7 MMBtu/hr: 20 ppmvd at 3% $O_2$<br>Units rated ≥ 0.7 to < 2.0 MMBtu/hr: 9 ppmvd at 3% $O_2$                                                                                             | Achieved in Practice per<br>California Boiler |
| SOx       | PUC quality natural gas or produced gas treated using a continuously operating sulfur removal system ( $\leq$ 80 ppmv total sulfur & $\leq$ 4 ppmv H <sub>2</sub> S)                                     | SMAQMD, SBCAPCD                               |
| PM10      | PUC quality natural gas or produced gas treated using a continuously operating sulfur removal system ( $\leq$ 80 ppmv total sulfur & $\leq$ 4 ppmv H <sub>2</sub> S) outlined in a Fuel Gas Sulfur Plan. | SMAQMD, SBCAPCD                               |
| PM2.5     | PUC quality natural gas or produced gas treated using a continuously operating sulfur removal system ( $\leq$ 80 ppmv total sulfur & $\leq$ 4 ppmv H <sub>2</sub> S) outlined in a Fuel Gas Sulfur Plan. | SMAQMD, SBCAPCD                               |
| со        | Units rated < 0.4 MMBtu/hr: 50 ppmvd at 3% $O_2$<br>Units rated ≥ 0.4 to < 2.0 MMBtu/hr: 100 ppmvd at 3% $O_2$                                                                                           | SMAQMD                                        |

BACT Determination Boilers/Heaters Rated ≥ 75,000 BTU/hr and < 2.0 MMBTU/hr Fueled by Natural Gas or LPG, Major Sources Page 18 of 18

|           | BACT DETERMINATION #328 – BOILERS/HEATERS RATED GREATER THAN OR EQUAL TO<br>75,000 BTU/HR TO LESS THAN 2.0 MMBTU/HR, FIRED ON LPG – MAJOR SOURCE<br>CATEGORY |                             |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|
| Pollutant | Standard                                                                                                                                                     | Source                      |  |  |  |
| VOC       | Good combustion practices                                                                                                                                    | SMAQMD                      |  |  |  |
| NOx       | Units rated < 0.7 MMBtu/hr: 20 ppmvd @ 3% O <sub>2</sub><br>Units rated $\geq$ 0.7 MMBtu/hr to < 2.0 MMBtu/hr: 12 ppmvd @ 3% O <sub>2</sub>                  | SMAQMD/California<br>Boiler |  |  |  |
| SOx       | Good combustion practices                                                                                                                                    | SMAQMD                      |  |  |  |
| PM10      | Good combustion practices                                                                                                                                    | SMAQMD                      |  |  |  |
| PM2.5     | Good combustion practices                                                                                                                                    | SMAQMD                      |  |  |  |
| со        | Units rated < 0.4 MMBTU/hr: Good combustion practices<br>Units rated $\ge$ 0.4 MMBTU/hr to < 2.0 MMBtu/hr: 400 ppmvd @ 3%<br>O <sub>2</sub>                  | SMAQMD                      |  |  |  |

#### D. <u>SELECTION OF T-BACT</u>:

Toxics are in the form of VOCs and particulate matter. Since toxic emissions from natural gas and LPG-fired boilers in the 75,000 Btu/hr to less than 2.0 MMBtu/hr range are so small and the cancer risk is expected to be well below 1 in a million cases, T-BACT was not evaluated for this determination.

APPROVED BY: Brian 7 Krebs DATE: 06-14-2023

## **Attachment A**

## **Review of BACT Determinations published by EPA**

List of BACT determinations published in EPA's RACT/BACT/LAER Clearinghouse (RBLC) for Commercial/Institutional-Sized Boilers/Furnaces < 100 Million BTU/H - Natural Gas (includes propane & liquefied petroleum gas) (Process Code 13.310):

|         | Boilers/Heaters < 2.0 MMBTU/hr |               |             |            |                             |                                                                           |                        |  |  |
|---------|--------------------------------|---------------|-------------|------------|-----------------------------|---------------------------------------------------------------------------|------------------------|--|--|
| RBLC#   | Permit<br>Date <sup>(A)</sup>  | Rating        | Fuel        | Pollutant  | Standard                    | Control Technology                                                        | Case-By-<br>Case Basis |  |  |
| MI-0426 | 3/24/2017                      | 1 MMBTU/hr    | Natural gas | NOx        | 9 ppmvd @ 3% O <sub>2</sub> | Ultra-low NOx burner and good combustion practices                        | BACT-PSD               |  |  |
| MI-0426 | 3/24/2017                      | 1 MMBTU/hr    | Natural gas | СО         | 84 lb/MMSCF                 | Good combustion practices<br>and clean burn fuel (pipeline<br>quality NG) | BACT-PSD               |  |  |
| MI-0426 | 3/24/2017                      | 1 MMBTU/hr    | Natural gas | PM10/PM2.5 | 0.52 lb/MMSCF               | Good combustion practices<br>and clean burn fuel (pipeline<br>quality NG) | BACT-PSD               |  |  |
| SC-0179 | 3/18/2015                      | 1.83 MMBTU/hr | Natural gas | PM10       | 0.01 lb/hr                  | Use of natural gas and good<br>combustion practices                       | BACT-PSD               |  |  |
| SC-0179 | 3/18/2015                      | 1.83 MMBTU/hr | Natural gas | PM2.5      | 0.003 lb/hr                 | Use of natural gas and good combustion practices                          | BACT-PSD               |  |  |
| SC-0179 | 3/18/2015                      | 1.83 MMBTU/hr | Natural gas | VOC        | 0.01 lb/hr                  | Use of natural gas and good<br>combustion practices                       | BACT-PSD               |  |  |

(A) Due to the large number of entries only determinations made (based on Permit Date) entered since 01/01/2009 are included in the above table.

= Selected as the most stringent BACT determination achieved in practice.

# Attachment B

**Cost Effectiveness Determination for SCR** 

### Cost Effectiveness for 0.075 MMBtu/hr Boiler

|                                                        | Data In                                                                                                  | puts                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enter the following data for your combustion unit:     |                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |
| Is the combustion unit a utility or industrial boiler? |                                                                                                          | What type of fuel does the unit burn? Natural Gas  Reset Form                                                                                                                                                                                                                                                                   |
| Complete all of the highlighted data fields:           |                                                                                                          | Not applicable to units burning fuel oil or natural gas                                                                                                                                                                                                                                                                         |
| What is the MW rating at full load capacity (Bmw)?     | 0.0092 MW                                                                                                | Type of coal burned: Not Applicable                                                                                                                                                                                                                                                                                             |
| What is the higher heating value (HHV) of the fuel?    | 1,000 Btu/scf                                                                                            | Enter the sulfur content (%S) = percent by weight                                                                                                                                                                                                                                                                               |
| What is the estimated actual annual MWhs output?       | 81 MWhs                                                                                                  | Not applicable to units buring fuel oil or natural gas                                                                                                                                                                                                                                                                          |
| Enter the net plant heat input rate (NPHR)             | 8.2 MMBtu/MW                                                                                             | Note: The table below is pre-populated with default values for HHV and %S. Please enter<br>the actual values for these parameters in the table below. If the actual value for any<br>parameter is not known, you may use the default values provided.                                                                           |
| If the NPHR is not known, use the default NPHR value:  | Fuel Type         Default NPHR           Coal         10 MMBtu/MW           Fuel Oil         11 MMBtu/MW | Fraction in<br>Coal TypeCoal Blend%SHHV (Btu/lb)Bituminous01.84Sub-Bituminous00.41Lignite00.82                                                                                                                                                                                                                                  |
| Plant Elevation                                        | Natural Gas 8.2 MMBtu/MW  1500 Feet above sea level                                                      | Please click the calculate button to calculate weighted average values based on the data in the table above.                                                                                                                                                                                                                    |
|                                                        |                                                                                                          | For coal-fired boilers, you may use either Method 1 or Method 2 to       Method 1         calculate the catalyst replacement cost. The equations for both methods       Method 1         are shown on rows 85 and 86 on the Cost Estimate tab. Please select       Method 2         your preferred method:       Not applicable |

#### Enter the following design parameters for the proposed SCR:

| Number of days the SCR operates $\left(t_{\scriptscriptstyle SCR}\right)$                                                                                                             | 365 days                  | Number of SCR reactor chambers (r                                                                                            | n <sub>scr</sub> )         | 1                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|
| Number of days the boiler operates $\left(t_{\text{plant}}\right)$                                                                                                                    | 365 days                  | Number of catalyst layers ( $R_{tayer}$ )                                                                                    |                            | 3                                             |
| Inlet NO <sub>x</sub> Emissions (NOx <sub>in</sub> ) to SCR                                                                                                                           | 0.0243 Ib/MMBtu           | Number of empty catalyst layers (R                                                                                           | R <sub>ompty</sub> )       | 1                                             |
| Outlet NO <sub>x</sub> Emissions (NOx <sub>out</sub> ) from SCR                                                                                                                       | 0.0061 lb/MMBtu           | Ammonia Slip (Slip) provided by ve                                                                                           | endor                      | 2 ppm                                         |
| Stoichiometric Ratio Factor (SRF)                                                                                                                                                     | 4.050                     | Volume of the catalyst layers (Vol                                                                                           |                            | LINK Cable from                               |
| *The SRF value of 1.05 is a default value. User should enter actual valu                                                                                                              | 1.050<br>e, if known.     | (Enter "UNK" if value is not known)<br>Flue gas flow rate (Q <sub>fluegas</sub> )                                            | )                          | UNK Cubic feet                                |
|                                                                                                                                                                                       |                           | (Enter "UNK" if value is not known)                                                                                          | )                          | UNK acfm                                      |
| Estimated operating life of the catalyst (H <sub>catalyst</sub> )<br>Estimated SCR equipment life<br>* For utility boilers, the typical equipment life of an SCR is at least 30 years | 24,000 hours<br>30 Years* | Gas temperature at the SCR inlet (<br>Base case fuel gas volumetric flow<br>factor (Q <sub>dot</sub> )                       |                            | 650 °F<br>484 ft <sup>3</sup> /min-MMBtu/hour |
| Concentration of reagent as stored (C <sub>stored</sub> )                                                                                                                             | 29 percent*               | *The reagent concentration of 29% and density of 56 lbs/oft                                                                  |                            |                                               |
| Density of reagent as stored ( $\rho_{mored}$ )                                                                                                                                       | 56 lb/cubic feet*         | are default values for ammonia reagent. User should enter<br>actual values for reagent, if different from the default values |                            |                                               |
| Number of days reagent is stored (t <sub>storage</sub> )                                                                                                                              | 14 days                   | provided. Den                                                                                                                | nsities of typical         | SCR reagents:                                 |
|                                                                                                                                                                                       |                           |                                                                                                                              | 6 urea solution            | 71 lbs/ft <sup>3</sup>                        |
|                                                                                                                                                                                       |                           | 29.4                                                                                                                         | 4% aqueous NH <sub>3</sub> | 56 lbs/ft <sup>3</sup>                        |
|                                                                                                                                                                                       |                           |                                                                                                                              |                            |                                               |

#### Enter the cost data for the proposed SCR:

|       | Desired dollar-year                                                                                                     | 2022    |                                                                                                                    |                                                                                                                        |
|-------|-------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|       | CEPCI for 2022                                                                                                          | 317.299 | Enter the CEPCI value for 2022 247.7 2016 CEPCI                                                                    | CEPCI = Chemical Engineering Plant Cost Index                                                                          |
|       |                                                                                                                         |         |                                                                                                                    |                                                                                                                        |
|       | Annual Interest Rate (i)                                                                                                | 7       | Percent                                                                                                            |                                                                                                                        |
|       |                                                                                                                         |         |                                                                                                                    | * \$0.293/gallon is a default value for 29¼ ammonia. User should enter actual                                          |
|       | Reagent (Cost <sub>reag</sub> )                                                                                         | 0.293   | S/gallon for 29% ammonia*                                                                                          | value, if known.                                                                                                       |
|       | Electricity (Cost <sub>elect</sub> )                                                                                    | 0.1124  | \$/kWh                                                                                                             |                                                                                                                        |
|       | Catalyst cost (CC replace)                                                                                              | 227.00  | \$/cubic foot (includes removal and disposal/regeneration of<br>existing catalyst and installation of new catalyst | * \$2271cf is a default value for the catalyst cost based on 2016 prices. User should<br>enter actual value, if known. |
|       | Operator Labor Rate                                                                                                     | 27.48   | S/hour (including benefits)                                                                                        |                                                                                                                        |
|       | Operator Hours/Day                                                                                                      | 4.00    | hours/day*                                                                                                         | <sup>1</sup> 4 hours/day is a default value for the operator labor. User should enter actual value, if known.          |
|       | Note: The use of CEPCI in this spreadsheet is not an endor<br>known cost index to spreadsheet users. Use of other well- |         |                                                                                                                    |                                                                                                                        |
| ∕lain | tenance and Administrative Charges Cost Factors:                                                                        |         |                                                                                                                    |                                                                                                                        |

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

| 0.005 |  |
|-------|--|
| 0.03  |  |
|       |  |

#### **SCR Design Parameters**

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

| Parameter                                                | Equation                                                                                                                                 | Calculated Value | Units      |                                                              |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|--------------------------------------------------------------|
| Maximum Annual Heat Input Rate (Q <sub>8</sub> ) =       | Bmw x NPHR =                                                                                                                             | 0.075            | MMBtu/hour |                                                              |
| Maximum Annual MW Output (Bmw) =                         | Bmw x 8760 =                                                                                                                             | 81               | MWhs       |                                                              |
| Estimated Actual Annual MWhs Output                      |                                                                                                                                          | 81               | MWhs       |                                                              |
| (Boutput) =                                              |                                                                                                                                          | 01               | WI WI IS   |                                                              |
| Heat Rate Factor (HRF) =                                 | NPHR/10 =                                                                                                                                | 0.82             |            |                                                              |
| Total System Capacity Factor (CF <sub>total</sub> ) =    | (Boutput/Bmw)*(tscr/tplant) =                                                                                                            | 1.000            | fraction   |                                                              |
| Total operating time for the SCR $(t_{op}) =$            | CF <sub>total</sub> x 8760 =                                                                                                             | 8760             | hours      |                                                              |
| NOx Removal Efficiency (EF) =                            | (NOx <sub>in</sub> - NOx <sub>out</sub> )/NOx <sub>in</sub> =                                                                            | 74.9             | percent    |                                                              |
| NOx removed per hour =                                   | NOx <sub>in</sub> x EF x Q <sub>B</sub> =                                                                                                | 0.00             | lb/hour    |                                                              |
| Total NO <sub>x</sub> removed per year =                 | (NOx <sub>in</sub> x EF x Q <sub>B</sub> x t <sub>op</sub> )/2000 =                                                                      | 0.0060138        | tons/year  |                                                              |
| NO <sub>x</sub> removal factor (NRF) =                   | EF/80 =                                                                                                                                  | 0.94             |            |                                                              |
| Volumetric flue gas flow rate (q <sub>flue gas</sub> ) = | Q <sub>fuel</sub> x QB x (460 + T)/(460 + 700)n <sub>scr</sub> =                                                                         | 35               | acfm       |                                                              |
| Space velocity (V <sub>space</sub> ) =                   | q <sub>flue gas</sub> /Vol <sub>catalyst</sub> =                                                                                         | 137.39           | /hour      |                                                              |
| Residence Time                                           | 1/V <sub>space</sub>                                                                                                                     | 0.01             | hour       |                                                              |
| Coal Factor (CoalF) =                                    | 1 for oil and natural gas; 1 for bituminous; 1.05 for sub-<br>bituminous; 1.07 for lignite (weighted average is used<br>for coal blends) | 1.00             |            |                                                              |
| SO <sub>2</sub> Emission rate =                          | (%S/100)x(64/32)*1x10 <sup>6</sup> )/HHV =                                                                                               |                  |            | Not applicable; factor applies only<br>to coal-fired boilers |
| Elevation Factor (ELEVF) =                               | 14.7 psia/P =                                                                                                                            | 1.06             |            |                                                              |
| Atmospheric pressure at sea level (P) =                  | 2116 x [(59-(0.00356xh)+459.7)/518.6] <sup>5.256</sup> x (1/144)* =                                                                      | 13.9             | psia       |                                                              |
| Retrofit Factor (RF)                                     | New Construction                                                                                                                         | 0.80             |            |                                                              |

\* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at

https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

#### Catalyst Data:

| Parameter                                               | Equation                                                                                                                                                  | Calculated Value | Units           |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| Future worth factor (FWF) =                             | (interest rate)(1/((1+ interest rate) <sup>Y</sup> -1) , where Y =<br>H <sub>catalyts</sub> /(t <sub>SCR</sub> x 24 hours) rounded to the nearest integer | 0.3111           | Fraction        |
| Catalyst volume (Vol <sub>catalyst</sub> ) =            | 2.81 x Q <sub>8</sub> x EF <sub>adj</sub> x Slipadj x NOx <sub>adj</sub> x S <sub>adj</sub> x (T <sub>adj</sub> /N <sub>scr</sub> )                       | 0.25             | Cubic feet      |
| Cross sectional area of the catalyst $(A_{catalyst}) =$ | q <sub>flue gas</sub> /(16ft/sec x 60 sec/min)                                                                                                            | 0                | ft <sup>2</sup> |
| Height of each catalyst layer (H <sub>layer</sub> ) =   | (Vol <sub>catalyst</sub> /(R <sub>layer</sub> x A <sub>catalyst</sub> )) + 1 (rounded to next<br>highest integer)                                         | 3                | feet            |

#### SCR Reactor Data:

| Parameter                                                     | Equation                                                                               | Calculated Value | Units                                                                              |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------|
| Cross sectional area of the reactor $(A_{SCR})$ =             | 1.15 x A <sub>catalyst</sub>                                                           | (                | ) ft <sup>2</sup>                                                                  |
| Reactor length and width dimensions for a<br>square reactor = | (A <sub>SCR</sub> ) <sup>0.5</sup>                                                     | 0.2              | ? feet                                                                             |
| Reactor height =                                              | (R <sub>layer</sub> + R <sub>empty</sub> ) x (7ft + h <sub>layer</sub> ) + 9ft         | 50               | feet                                                                               |
| Reagent Data:<br>Type of reagent used                         | Ammonia                                                                                |                  | Molecular Weight of Reagent (MW) = 17.03 g/mole<br>Density = 56 lb/ft <sup>3</sup> |
| Parameter                                                     | Equation                                                                               | Calculated Value | Units                                                                              |
| Reagent consumption rate (m <sub>reagent</sub> ) =            | (NOx <sub>in</sub> x Q <sub>B</sub> x EF x SRF x MW <sub>R</sub> )/MW <sub>NOx</sub> = | (                | b/hour                                                                             |
| Reagent Usage Rate (m <sub>sol</sub> ) =                      | m <sub>reagent</sub> /Csol =                                                           | (                | b/hour                                                                             |
|                                                               | (m <sub>sol</sub> x 7.4805)/Reagent Density                                            | (                | ) gal/hour                                                                         |
| Estimated tank volume for reagent storage =                   | (m <sub>sol</sub> x 7.4805 x t <sub>storage</sub> x 24)/Reagent Density =              | 100              | gallons (storage needed to store a 14 day reagent supply rou                       |

| Parameter                                                               | Equation                                             | Calculated Value            |       |
|-------------------------------------------------------------------------|------------------------------------------------------|-----------------------------|-------|
| Capital Recovery Factor (CRF) =                                         | $i (1+i)^n / (1+i)^n - 1 =$                          | 0.0806                      |       |
|                                                                         | Where n = Equipment Life and i= Interest Rate        |                             |       |
|                                                                         |                                                      |                             | -     |
|                                                                         | E-mailer -                                           | and and a second state laws | Units |
| Other parameters                                                        | Equation                                             | Calculated Value            | Units |
|                                                                         | Equation                                             | Calculated Value            | Units |
| Other parameters<br>Electricity Usage:<br>Electricity Consumption (P) = | A x 1,000 x 0.0056 x (CoalF x HRF) <sup>0.43</sup> = | Calculated Value            |       |

| Cost Estimate                                                               |                               |                         |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------|-------------------------|--|--|--|--|
| Total Capital Investment (TCI)                                              |                               |                         |  |  |  |  |
| TCI for Oil and Natural                                                     | Gas Boilers                   |                         |  |  |  |  |
| For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:      |                               |                         |  |  |  |  |
| TCI = 86,380 x (200/B <sub>MW</sub> ) <sup>0.35</sup> x                     | B <sub>MW</sub> x ELEVF x RF  |                         |  |  |  |  |
| For Oil and Natural Gas-Fired Utility Boilers >500 MW:                      |                               |                         |  |  |  |  |
| TCI = 62,680 x B <sub>MW</sub> x E                                          | LEVF x RF                     |                         |  |  |  |  |
| For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour :         |                               |                         |  |  |  |  |
| TCI = 7,850 x (2,200/Q <sub>B</sub> ) <sup>0.35</sup> x                     | Q <sub>B</sub> x ELEVF x RF   |                         |  |  |  |  |
| For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour : |                               |                         |  |  |  |  |
| $TCI = 10,530 \times (1,640/Q_B)^{0.35}$                                    | x Q <sub>B</sub> x ELEVF x RF |                         |  |  |  |  |
| For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:                         |                               |                         |  |  |  |  |
| TCI = 5,700 x Q <sub>8</sub> x EL                                           | EVF x RF                      |                         |  |  |  |  |
| For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:                 |                               |                         |  |  |  |  |
| TCI = 7,640 x Q <sub>B</sub> x EL                                           | EVF x RF                      |                         |  |  |  |  |
|                                                                             | 4                             |                         |  |  |  |  |
| Total Capital Investment (TCI) =                                            | \$28,327                      | in 2022 dollars         |  |  |  |  |
|                                                                             |                               |                         |  |  |  |  |
| Annual Cost                                                                 | ts                            |                         |  |  |  |  |
|                                                                             |                               |                         |  |  |  |  |
| Total Annual Cost                                                           |                               |                         |  |  |  |  |
| TAC = Direct Annual Costs + Ind                                             | lirect Annual Costs           |                         |  |  |  |  |
| Direct Annual Costs (DAC) =                                                 |                               | \$195 in 2022 dollars   |  |  |  |  |
| Indirect Annual Costs (IDAC) =                                              |                               | \$3,489 in 2022 dollars |  |  |  |  |
| Total annual costs (TAC) = DAC + IDAC                                       |                               | \$3,683 in 2022 dollars |  |  |  |  |
|                                                                             |                               |                         |  |  |  |  |

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

| Annual Maintenance Cost =          | 0.005 x TCI =                                                                              | \$142 in 2022 dollars                            |
|------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|
| Annual Reagent Cost =              | m <sub>sol</sub> x Cost <sub>reag</sub> x t <sub>op</sub> =                                | \$1 in 2022 dollars                              |
| Annual Electricity Cost =          | P x Cost <sub>elect</sub> x t <sub>op</sub> =                                              | \$47 in 2022 dollars                             |
| Annual Catalyst Replacement Cost = |                                                                                            | \$6 in 2022 dollars                              |
|                                    | n <sub>scr</sub> x Vol <sub>cat</sub> x (CC <sub>replace</sub> /R <sub>layer</sub> ) x FWF |                                                  |
| Direct Annual Cost =               |                                                                                            | \$195 in 2022 dollars                            |
|                                    | Indirect Annual Cost (IDAC)                                                                |                                                  |
|                                    | IDAC = Administrative Charges + Capital Recovery C                                         | osts                                             |
| Administrative Charges (AC) =      | 0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =                                   | \$1,205 in 2022 dollars                          |
| Capital Recovery Costs (CR)=       | CRF x TCI =                                                                                | \$2,283 in 2022 dollars                          |
| Indirect Annual Cost (IDAC) =      | AC + CR =                                                                                  | \$3,489 in 2022 dollars                          |
|                                    | Cost Effectiveness                                                                         |                                                  |
|                                    | Cost Effectiveness                                                                         |                                                  |
|                                    | Cost Effectiveness = Total Annual Cost/ NOx Removed                                        | l/year                                           |
| Total Annual Cost (TAC) =          |                                                                                            | \$3,683 per year in 2022 dollars                 |
| NOx Removed =                      |                                                                                            | 0.00601 tons/year                                |
| Cost Effectiveness =               |                                                                                            | \$612,483 per ton of NOx removed in 2022 dollars |

### Cost Effectiveness for 2.0 MMBtu/hr Boiler

| Data Inputs                                            |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Enter the following data for your combustion unit:     |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |  |
| Is the combustion unit a utility or industrial boiler? | y v<br>struction v                                                                                                                                  | What type of fuel does the unit burn? Natural Gas<br>Reset Form                                                                                                                                                                                                                                                 |  |
| Complete all of the highlighted data fields:           |                                                                                                                                                     | Not applicable to units burning fuel oil or natural gas                                                                                                                                                                                                                                                         |  |
| What is the MW rating at full load capacity (Bmw)?     | 0.3 MW                                                                                                                                              | Type of coal burned: Not Applicable                                                                                                                                                                                                                                                                             |  |
| What is the higher heating value (HHV) of the fuel?    | 1,000 Btu/scf                                                                                                                                       | Enter the sulfur content (%S) = percent by weight                                                                                                                                                                                                                                                               |  |
| What is the estimated actual annual MWhs output?       | 2,628 MWhs                                                                                                                                          |                                                                                                                                                                                                                                                                                                                 |  |
|                                                        |                                                                                                                                                     | Not applicable to units buring fuel oil or natural gas<br>Note: The table below is pre-populated with default values for HHV and %S. Please enter<br>the actual values for these parameters in the table below. If the actual value for any<br>parameter is not known, you may use the default values provided. |  |
| Enter the net plant heat input rate (NPHR)             | 8.2 MMBtu/MW                                                                                                                                        | Fraction in                                                                                                                                                                                                                                                                                                     |  |
| If the NPHR is not known, use the default NPHR value:  | Fuel Type         Default NPHR           Coal         10 MMBtu/MW           Fuel Oil         11 MMBtu/MW           Natural Gas         8.2 MMBtu/MW | Coal Type         Coal Blend         %S         HHV (Btu/lb)           Bituminous         0         1.84         11,841           Sub-Bituminous         0         0.41         8,826           Lignite         0         0.82         6,685                                                                    |  |
| Plant Elevation                                        | 1500 Feet above sea level                                                                                                                           | Please click the calculate button to calculate<br>weighted average values based on the data in the<br>table above.                                                                                                                                                                                              |  |
|                                                        |                                                                                                                                                     | For coal-fired boilers, you may use either Method 1 or Method 2 to<br>calculate the catalyst replacement cost. The equations for both methods<br>are shown on rows 85 and 86 on the <i>Cost Estimate</i> tab. Please select<br>your preferred method:<br>Not applicable                                         |  |

#### Enter the following design parameters for the proposed SCR:

| Number of days the SCR operates $(t_{\mbox{\tiny SCR}})$                         | 365    | days           | Number of SCR reactor chamb                                                                                                  | ers (n <sub>scr</sub> )   | 1                   |                        |
|----------------------------------------------------------------------------------|--------|----------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|------------------------|
| Number of days the boiler operates $\left(t_{\text{plane}}\right)$               | 365    | days           | Number of catalyst layers (R <sub>lay</sub>                                                                                  | er)                       | 3                   |                        |
| Inlet NO, Emissions (NOx,) to SCR                                                | 0.0243 | Ib/MMBtu       | Number of empty catalyst laye                                                                                                | ers (R <sub>empty</sub> ) | 1                   |                        |
| Outlet NO <sub>x</sub> Emissions (NOx <sub>out</sub> ) from SCR                  | 0.0061 | lb/MMBtu       | Ammonia Slip (Slip) provided                                                                                                 | by vendor                 | 2 ppm               |                        |
| Stoichiometric Ratio Factor (SRF)                                                | 1.050  |                | Volume of the catalyst layers<br>(Enter "UNK" if value is not kn                                                             |                           | UNK Cubic           | feet                   |
| *The SRF value of 1.05 is a default value. User should enter actual valu         |        |                | Flue gas flow rate (Q <sub>fluegas</sub> )                                                                                   | owny                      | Unix Courte         |                        |
|                                                                                  |        |                | (Enter "UNK" if value is not kn                                                                                              | own)                      | UNK acfm            |                        |
|                                                                                  |        |                | _                                                                                                                            |                           |                     |                        |
| Estimated operating life of the catalyst $(H_{\text{catalyst}})$                 | 24,000 | hours          |                                                                                                                              |                           |                     |                        |
| Estimated SCR equipment life                                                     | 30     | Years*         | Gas temperature at the SCR in                                                                                                | let (T)                   | 650 °F              |                        |
| * For utility boilers, the typical equipment life of an SCR is at least 30 years | ars.   |                | Base case fuel gas volumetric<br>factor (Q <sub>suel</sub> )                                                                 | flow rate                 | 484 ft³/mir         | n-MMBtu/hour           |
| Concentration of reagent as stored (C <sub>mored</sub> )                         | 29     | percent*       | *The reagent concentration of 25% and density of 56 lbs/cft                                                                  |                           |                     |                        |
| Density of reagent as stored $(\rho_{\text{stored}})$                            | 56     | Ib/cubic feet* | are default values for ammonia reagent. User should enter<br>actual values for reagent, if different from the default values |                           |                     |                        |
| Number of days reagent is stored (t <sub>storage</sub> )                         | 14     | days           | provided.                                                                                                                    | Densities of t            | pical SCR reagents: |                        |
|                                                                                  |        |                | _                                                                                                                            | 50% urea solu             | tion                | 71 lbs/ft <sup>3</sup> |
|                                                                                  |        |                |                                                                                                                              | 29.4% aqueou              | s NH <sub>3</sub>   | 56 lbs/ft <sup>3</sup> |
| Select the reagent used Ammo                                                     | nia 🔻  |                |                                                                                                                              |                           |                     |                        |
|                                                                                  |        |                |                                                                                                                              |                           |                     |                        |

#### Enter the cost data for the proposed SCR:

| Desired dollar-year                  | 2022    |                                                                                                                   |                                                                                                                        |
|--------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| CEPCI for 2022                       | 317.299 | Enter the CEPCI value for 2022 247.7 2016 CEPCI                                                                   | CEPCI = Chemical Engineering Plant Cost Index                                                                          |
| Annual Interest Rate (i)             | 7       | Percent                                                                                                           |                                                                                                                        |
| Reagent (Cost <sub>reag</sub> )      | 0.293   | S/gallon for 29% ammonia*                                                                                         | * \$0.293/gallon is a default value for 29% ammonia. User should enter actual value, if known.                         |
| Electricity (Cost <sub>elect</sub> ) | 0.1124  | \$/kWh                                                                                                            |                                                                                                                        |
| Catalyst cost (CC replace)           | 227.00  | S/cubic foot (includes removal and disposal/regeneration of<br>existing catalyst and installation of new catalyst | * \$2271cf is a default value for the catalyst cost based on 2016 prices. User should<br>enter actual value, if known. |
| Operator Labor Rate                  | 27.48   | \$/hour (including benefits)                                                                                      |                                                                                                                        |
| Operator Hours/Day                   | 4.00    | hours/day*                                                                                                        | * 4 hours/day is a default value for the operator labor. User should enter actual value, if known.                     |
| Operator Hours/Day                   | 4.00    | hours/day*                                                                                                        | value, if known.                                                                                                       |

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a wellknown cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

#### Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =



#### **SCR Design Parameters**

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

| Parameter                                             | Equation                                                                                                                                 | Calculated Value | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Maximum Annual Heat Input Rate (Q <sub>8</sub> ) =    | Bmw x NPHR =                                                                                                                             | 2                | MMBtu/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
| Maximum Annual MW Output (Bmw) =                      | Bmw x 8760 =                                                                                                                             | 2,628            | MWhs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Estimated Actual Annual MWhs Output                   |                                                                                                                                          | 2 628            | MWhs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| (Boutput) =                                           |                                                                                                                                          | 2,020            | in the second se |                                                              |
| Heat Rate Factor (HRF) =                              | NPHR/10 =                                                                                                                                | 0.82             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| Total System Capacity Factor (CF <sub>total</sub> ) = | (Boutput/Bmw)*(tscr/tplant) =                                                                                                            | 1.000            | fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
| Total operating time for the SCR $(t_{op}) =$         | CF <sub>total</sub> x 8760 =                                                                                                             | 8760             | hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
| NOx Removal Efficiency (EF) =                         | (NOx <sub>in</sub> - NOx <sub>out</sub> )/NOx <sub>in</sub> =                                                                            | 74.9             | percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
| NOx removed per hour =                                | NOx <sub>in</sub> x EF x Q <sub>B</sub> =                                                                                                | 0.04             | lb/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
| Total NO <sub>x</sub> removed per year =              | (NOx <sub>in</sub> x EF x Q <sub>8</sub> x t <sub>op</sub> )/2000 =                                                                      | 0.20             | tons/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| NO <sub>x</sub> removal factor (NRF) =                | EF/80 =                                                                                                                                  | 0.94             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| Volumetric flue gas flow rate $(q_{flue gas}) =$      | Q <sub>fuel</sub> x QB x (460 + T)/(460 + 700)n <sub>scr</sub> =                                                                         | 1,139            | acfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Space velocity (V <sub>space</sub> ) =                | q <sub>flue gas</sub> /Vol <sub>catalyst</sub> =                                                                                         | 137.39           | /hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
| Residence Time                                        | 1/V <sub>space</sub>                                                                                                                     | 0.01             | hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Coal Factor (CoalF) =                                 | 1 for oil and natural gas; 1 for bituminous; 1.05 for sub-<br>bituminous; 1.07 for lignite (weighted average is used<br>for coal blends) | 1.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| SO <sub>2</sub> Emission rate =                       | (%S/100)x(64/32)*1x10 <sup>6</sup> )/HHV =                                                                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not applicable; factor applies only<br>to coal-fired boilers |
| Elevation Factor (ELEVF) =                            | 14.7 psia/P =                                                                                                                            | 1.06             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| Atmospheric pressure at sea level (P) =               | 2116 x [(59-(0.00356xh)+459.7)/518.6] <sup>5.256</sup> x (1/144)* =                                                                      | 13.9             | psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Retrofit Factor (RF)                                  | New Construction                                                                                                                         | 0.80             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |

| Catalyst Data:                                            |                                                                                                                                      |                  |                 |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|--|
| Parameter                                                 | Equation                                                                                                                             | Calculated Value | Units           |  |
| Future worth factor (FWF) =                               | (interest rate)(1/((1+ interest rate) <sup>Y</sup> -1), where Y = $H_{catalyts}/(t_{scr} x 24$ hours) rounded to the nearest integer | 0.3111           | Fraction        |  |
| Catalyst volume (Vol <sub>catalyst</sub> ) =              | 2.81 x Q <sub>8</sub> x EF <sub>adj</sub> x Slipadj x NOx <sub>adj</sub> x S <sub>adj</sub> x (T <sub>adj</sub> /N <sub>scr</sub> )  | 8.29             | Cubic feet      |  |
| Cross sectional area of the catalyst ( $A_{catalyst}$ ) = | q <sub>flue gas</sub> /(16ft/sec x 60 sec/min)                                                                                       | 1                | ft <sup>2</sup> |  |
| Height of each catalyst layer (H <sub>layer</sub> ) =     | (Vol <sub>catalyst</sub> /(R <sub>layer</sub> x A <sub>catalyst</sub> )) + 1 (rounded to next<br>highest integer)                    | 3                | feet            |  |

#### SCR Reactor Data:

| Parameter                                         | Equation                                                                       | Calculated Value | Units                              |          |
|---------------------------------------------------|--------------------------------------------------------------------------------|------------------|------------------------------------|----------|
| Cross sectional area of the reactor $(A_{SCR}) =$ | 1.15 x A <sub>catalyst</sub>                                                   | 1                | ft <sup>2</sup>                    |          |
| Reactor length and width dimensions for a         | (A <sub>SCR</sub> ) <sup>0.5</sup>                                             | 12               | feet                               |          |
| square reactor =                                  | (Ascr)                                                                         | 1.2              | leet                               |          |
| Reactor height =                                  | (R <sub>layer</sub> + R <sub>empty</sub> ) x (7ft + h <sub>layer</sub> ) + 9ft | 50               | feet                               |          |
|                                                   |                                                                                |                  |                                    |          |
|                                                   |                                                                                |                  |                                    |          |
| Reagent Data:                                     |                                                                                |                  |                                    |          |
| Type of reagent used                              | Ammonia                                                                        |                  | Molecular Weight of Reagent (MW) = | 17.03 g/ |

56 lb/ft3 Density = **Calculated Value** Equation Units Parameter 0 lb/hour Reagent consumption rate (m<sub>reagent</sub>) = (NOx<sub>in</sub> x Q<sub>B</sub> x EF x SRF x MW<sub>R</sub>)/MW<sub>NOx</sub> = 0 lb/hour Reagent Usage Rate (m<sub>sol</sub>) = m<sub>reagent</sub>/Csol = (m<sub>sol</sub> x 7.4805)/Reagent Density 0 gal/hour Estimated tank volume for reagent storage = 100 gallons (storage needed to store a 14 day reagent supply rounded (m<sub>sol</sub> x 7.4805 x t<sub>storage</sub> x 24)/Reagent Density =

#### Capital Recovery Factor:

| Parameter                       | Equation                                             | Calculated Value |    |
|---------------------------------|------------------------------------------------------|------------------|----|
| Capital Recovery Factor (CRF) = | $i (1+i)^{n}/(1+i)^{n} - 1 =$                        | 0.0806           |    |
|                                 | Where n = Equipment Life and i= Interest Rate        |                  | J  |
| Other parameters                | Equation                                             | Calculated Value | Un |
| ourer parameters                | Equation                                             | Calculated value | On |
| Electricity Usage:              |                                                      | Calculated Value |    |
|                                 | A x 1,000 x 0.0056 x (CoalF x HRF) <sup>0.43</sup> = | 1.54             |    |

#### **Cost Estimate Total Capital Investment (TCI)** TCI for Oil and Natural Gas Boilers For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW: TCI = 86,380 x (200/B<sub>MW</sub>)<sup>0.35</sup> x B<sub>MW</sub> x ELEVF x RF For Oil and Natural Gas-Fired Utility Boilers >500 MW: TCI = 62,680 x B<sub>MW</sub> x ELEVF x RF For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour : TCI = 7,850 x $(2,200/Q_B)^{0.35}$ x Q<sub>B</sub> x ELEVF x RF For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour : $TCI = 10,530 \times (1,640/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$ For Oil-Fired Industrial Boilers >5,500 MMBtu/hour: TCI = 5,700 x Q<sub>R</sub> x ELEVF x RF For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour: TCI = 7,640 x Q<sub>8</sub> x ELEVF x RF in 2023 dollars Total Capital Investment (TCI) = \$272,817 **Annual Costs** Total Annual Cost (TAC) TAC = Direct Annual Costs + Indirect Annual Costs

| Direct Annual Costs (DAC) =           | \$3,099 in 2023 dollars  |
|---------------------------------------|--------------------------|
| Indirect Annual Costs (IDAC) =        | \$23,209 in 2023 dollars |
| Total annual costs (TAC) = DAC + IDAC | \$26,308 in 2023 dollars |
|                                       |                          |

**Direct Annual Costs (DAC)** 

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

BACT Template Version 032118

| A                                  | 0.005 - TOI -                                                                              | ¢4.204 to 2022 dollars                              |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Annual Maintenance Cost =          | 0.005 x TCI =                                                                              | \$1,364 in 2023 dollars                             |  |  |
| Annual Reagent Cost =              | m <sub>sol</sub> x Cost <sub>reag</sub> x t <sub>op</sub> =                                | \$21 in 2023 dollars                                |  |  |
| Annual Electricity Cost =          | P x Cost <sub>elect</sub> x t <sub>op</sub> =                                              | \$1,519 in 2023 dollars                             |  |  |
| Annual Catalyst Replacement Cost = |                                                                                            | \$195 in 2023 dollars                               |  |  |
|                                    |                                                                                            |                                                     |  |  |
|                                    | n <sub>scr</sub> x Vol <sub>cat</sub> x (CC <sub>replace</sub> /R <sub>layer</sub> ) x FWF |                                                     |  |  |
| Direct Annual Cost =               |                                                                                            | \$3,099 in 2023 dollars                             |  |  |
|                                    | Indirect Annual Cost (IDAC)                                                                |                                                     |  |  |
|                                    | IDAC = Administrative Charges + Capital Recov                                              | ery Costs                                           |  |  |
|                                    |                                                                                            |                                                     |  |  |
| Administrative Charges (AC) =      | 0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =                                   | \$1,220 in 2023 dollars<br>\$21,989 in 2023 dollars |  |  |
| Capital Recovery Costs (CR)=       | al Recovery Costs (CR)= CRF x TCI =                                                        |                                                     |  |  |
| Indirect Annual Cost (IDAC) =      | AC + CR =                                                                                  | \$23,209 in 2023 dollars                            |  |  |
|                                    |                                                                                            |                                                     |  |  |
|                                    | Cost Effectiveness                                                                         |                                                     |  |  |
|                                    | Cost Effectiveness = Total Annual Cost/ NOx Ren                                            | noved/year                                          |  |  |
| Total Annual Cost (TAC) =          |                                                                                            | \$26,308 per year in 2023 dollars                   |  |  |
| NOx Removed =                      |                                                                                            | 0.2 tons/year                                       |  |  |
| Cost Effectiveness =               |                                                                                            | \$134,154 per ton of NOx removed in 2023 dollars    |  |  |

## **Attachment C** California Boiler NOx Cost Estimate for 9 ppm Boilers

#### **Jeffrey Quok**

| From:    | Roehl Fabay <rfabay@californiaboiler.com></rfabay@californiaboiler.com> |
|----------|-------------------------------------------------------------------------|
| Sent:    | Tuesday, January 31, 2023 5:26 PM                                       |
| To:      | Jeffrey Quok                                                            |
| Subject: | RE: Boiler NOx emissions for Boilers less than 2 MMBtu/hr               |

#### \*\*\* THIS EMAIL ORIGINATED OUTSIDE AIRQUALITY.ORG \*\*\*

Hi Jeffrey,

For industrial type boiler, the Powerflame NP2 burner can do 9ppm from 700MBH to 2000MBH. However this depends on which boiler it goes into. Since the NP2 burner are metal mesh element type burner, there are some boilers which have some tight combustion chamber dimension which this burner will not work. The Powerflame NPM premix burner can only do 20ppm and this can be use on some of those smaller boiler with tight combustion chamber that the NP2 can't work.

Most industrial type boiler package are built by two separate company, we have the boiler manufacturer and the burner manufacturer. The boiler manufacturer normally mounts the burner at their facility. Unlike the commercial packaged type boiler, the boiler manufacturer also designs the burner that goes into their equipment. The combustion chamber design limits them from lowering the NOx even further.

The price difference between NPM and NP2 is quite significant because of the use of more advance controls versus linkage type on the NPM, you're looking at around \$10-14k difference.

Roehl Fabay California Boiler

| From: Roehl Fabay <rfabay@californiaboiler.com></rfabay@californiaboiler.com> |                                                           |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Sent: Wednesday, March 1, 2023 9:37 AM                                        |                                                           |  |
| To:                                                                           | Jeffrey Quok                                              |  |
| Subject:                                                                      | RE: Boiler NOx emissions for Boilers less than 2 MMBtu/hr |  |

#### \*\*\* THIS EMAIL ORIGINATED OUTSIDE AIRQUALITY.ORG \*\*\*

Jeffrey - see my response below in Red. - thanks!

Roehl Fabay California Boiler

From: Jeffrey Quok <JQuok@airquality.org> Sent: Tuesday, February 28, 2023 5:02 PM To: Roehl Fabay <rfabay@californiaboiler.com> Subject: RE: Boiler NOx emissions for Boilers less than 2 MMBtu/hr

Hi Roehl,

Thank you for providing this information. I did have a few follow up questions.

- Is the 9 ppm for the NP2 burner and 20 ppm for the Powerflame NPM burner achievable for both natural gas and LPG? If not, what ppm is achievable for LPG? Only on natural gas. LP on NP2 will be around 12 or 15. LP on NPM is still 20ppm on both LP and NG.
- Regarding the \$10-\$14k price difference, what are some rough estimated total costs for boilers in the 700 MBH to 2000 MBH range. This will vary depending on the type of boiler. NPM and NP2 can be use in different brand.

Thanks again for your help,

Jeffrey Quok Air Quality Engine er Desk: (279) 207-1145 JQuok@airquality.org www.AirQuality.org

when we have the second second



#### Jeffrey Quok

| From:    | Roehl Fabay <rfabay@californiaboiler.com></rfabay@californiaboiler.com> |
|----------|-------------------------------------------------------------------------|
| Sent:    | Thursday, March 23, 2023 7:43 PM                                        |
| To:      | Jeffrey Quok                                                            |
| Subject: | RE: Boiler NOx emissions for Boilers less than 2 MMBtu/hr               |

#### \*\*\* THIS EMAIL ORIGINATED OUTSIDE AIRQUALITY.ORG \*\*\*

Jeffrey,

See response below.

Thanks!

Roehl Fabay California Boiler

From: Jeffrey Quok <JQuok@airquality.org> Sent: Thursday, March 23, 2023 4:01 PM To: Roehl Fabay <rfabay@californiaboiler.com> Subject: RE: Boiler NOx emissions for Boilers less than 2 MMBtu/hr

Hi Roehl,

Thanks again for all your help. I've got a two more questions after receiving some comments on the proposed BACT.

- Is the proposed 9 ppm NOx limit for the Powerflame NP2 burner guaranteed by the manufacturer? Yes, this is guaranteed by the manufacturer.
- Have units been installed and were tested that meet the 9 ppm NOx limit in the 700MBH to 2000MBH range? Yes, this was commonly installed here in SCAQMD area.

Thank you,

Jeffrey Quok Air Quality Engineer Desk: (279) 207-1145 JQuok@airquality.org www.AirQuality.org

