BACT Determination Information

District Contact:
Felix Trujillo, Jr.
Phone No.: (279) 207-1154
email: ftrujillo@airquality.org

<table>
<thead>
<tr>
<th>ROCs</th>
<th>Standard:</th>
<th>Technology Description:</th>
<th>Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>Standard:</td>
<td>Technology Description:</td>
<td>Basis:</td>
</tr>
<tr>
<td>SOx</td>
<td>Standard:</td>
<td>Technology Description:</td>
<td>Basis:</td>
</tr>
</tbody>
</table>
| PM10 | Standard: | Technology Description: | See Page 7 of BACT 306
Basis: Achieved in Practice |
| PM2.5 | Standard: | Technology Description: | Basis: |
| CO | Standard: | Technology Description: | Basis: |
| LEAD | Standard: | Technology Description: | Basis: |

Comments:
This is a generic BACT determination based on BACT determinations made, and published, by other air agencies in California and/or other States.
BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

DETERMINATION NO.: 306
DATE: 6/29/22
ENGINEER: Felix Trujillo, Jr.

Category/General Equip Description: Concrete Batch Plant
Equipment Specific Description: Concrete Batch Plant < 5 Cubic Yards per Batch
Equipment Size/Rating: Small Emitter (< 10 lb/day)
Previous BACT Det. No.: None

This BACT determination will apply to concrete batch plants with a throughput less than 5 cubic yards per batch.

Concrete batching operations involve the processing of concrete and the handling of concrete components. Concrete is a mixture of sand, aggregate, portland cement, and water. Sand and aggregate add strength and cement acts as a binding agent in the mixture. A cement supplement, such as potash, may replace a portion of the cement to influence the mixture’s properties such as its permeability or strength. The concrete formula may vary depending upon the engineering specifications, its specific application, and the weather. Various types of equipment used in concrete batching operations can include hoppers, silos, conveyors, pumps, storage bins, front end loaders, trucks, engines, motors, generators, and boilers/water heaters.

There are two general methods of producing concrete: Wet-batching and dry batching. Wet-batching is a process whereby concrete is mixed at the plant and is then transported to a job site where it’s poured. The concrete may also be mixed and poured into molds on-site to create pre-formed products such as concrete pipes, slabs, and beams. Dry-batching is a process whereby concrete components are loaded into a truck mounted mixer and then subsequently mixed by the truck enroute to a job site where it is poured. An alternate form of dry-batching is the loading of concrete components into separate bins on a truck where the components remaining unmixed until they are offloaded at the job site.

The District’s Small Emitter and “Otherwise-Exempt Equipment” BACT Determinations policy states that units which are classified as small emitters (less than 10 lbs/day of VOC, NOx, SOx, PM10, or PM2.5 and less than 550 lbs/day of CO) and are located at non-major stationary sources are only required to meet BACT standards that have been achieved in practice. Therefore, this BACT determination will only be based on what is achieved in practice and will be only applied to small emitters at non-major sources. BACT will be evaluated on a case-by-case basis for units that do not fit this criteria.
BACT ANALYSIS

A: ACHIEVED IN PRACTICE (Rule 202, §205.1a)

The following control technologies are currently employed as BACT for Concrete Batch plants that produce less than 5 cubic yards per batch by the following air pollution control districts:

<table>
<thead>
<tr>
<th>US EPA</th>
</tr>
</thead>
</table>

BACT

Source: EPA RACT/BACT/LAER Clearinghouse

Concrete Batch Plants (A)

| PM10 | 1. Maintain a min 1.5% moisture content in materials less than 0.25 inches in diameter for the entire process and control efficiency of 81.5%. Nellis Air Force Base Concrete Batch Plant 02/26/2008, and
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>No standard</td>
</tr>
</tbody>
</table>

(A) The only criteria emissions of interest are PM10 and PM2.5. No standards are listed for VOC, NOx, SOx, or CO emissions. The batch capacity is not listed, so this BACT will be referenced in this determination.

RULE REQUIREMENTS:

None

CALIFORNIA AIR RESOURCES BOARD

BACT

None

RULE REQUIREMENTS:

Source: California Air Resources Board BACT Determination Tool: [Concrete Batch Plant Application No. 406717](https://www.arb.ca.gov/forms/bact/406717.html)
Searched “Concrete” to find SCAQMD BACT Determination.

Concrete Batch Plan (A)

<table>
<thead>
<tr>
<th>PM10</th>
<th>Venting of batch plant equipment and cement and flyash storage silos to baghouse or filter vent and maintaining sufficient moisture in aggregate at transfer points to control particulate emissions (11-12-03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>No standard</td>
</tr>
</tbody>
</table>

(A) The only criteria emissions of interest are PM10 and PM2.5. No standards are listed for VOC, NOx, SOx, or CO emissions.

This BACT is listed in the SMAQMD's Major Source clearinghouse and does not apply to minor sources. Therefore, this BACT will not be referenced for this small emitter determination.
SMAQMD

BACT
None

RULE REQUIREMENTS:
None

SOUTH COAST AQMD

BACT
Source: SCAQMD BACT Guidelines for Non-Major Sources, Page 32

Central Mixed Concrete Batch Plants < 5 cubic yards per batch (A)

<table>
<thead>
<tr>
<th>PM10</th>
<th>Water Spray (1988)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>No standard</td>
</tr>
</tbody>
</table>

(A) The only criteria emissions of interest are PM10 and PM2.5. No standards are listed for VOC, NOx, SOx, or CO emissions.

Transit Mixed Concrete Batch Plants (A)

<table>
<thead>
<tr>
<th>PM10</th>
<th>Baghouse Venting the Cement Weigh Hopper and the Mixer Truck Loading Station; and Adequate Aggregate Moisture (07-11-97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>No standard</td>
</tr>
</tbody>
</table>

(A) The only criteria emissions of interest are PM10 and PM2.5. No standards are listed for VOC, NOx, SOx, or CO emissions.

RULE REQUIREMENTS:
None

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

BACT
Source: BAAQMD Guideline 49.1 (9/4/91)

The BAAQMD has a BACT trigger level of 10 lb/day. Therefore, the BAAQMD BACT clearinghouse will not be referenced for this small emitter BACT determination.

RULE REQUIREMENTS:
None
SAN DIEGO COUNTY APCD

BACT
Source: NSR Requirements for BACT

The SDCAPCD has a BACT trigger level of 10 lb/day. Therefore, the SDCAPCD BACT clearinghouse will not be referenced for this small emitter BACT determination.

RULE REQUIREMENTS:
None

SAN JOAQUIN VALLEY APCD

BACT
Source: SJVUAPCD BACT Guideline 6.2.2 (7/31/18)

Concrete Batch Plants < 5 cubic yards per batch (A)

| PM10 | 1. Sand and Aggregate storage: outdoor storage piles adequately wetted to prevent visible emissions > 5% opacity
2. Sand and aggregate handling (all transfer points): water sprays on all transfer points
3. Sand and aggregate weigh batcher: material adequately wetted to prevent visible emissions > 5% opacity
4. Storage silos for cement, flyash and other supplements: enclosed silo vented to a control device with 99% efficiency (baghouse, bin vent or equivalent)
5. Cement weigh batcher: enclosed weigh batcher vented to a control device with 99% efficiency (baghouse or equivalent)
6. Transit-mixed truck loading: loading operation enclosed by a flexible shroud which seals to the truck and is vented to a control device with 99% efficiency (baghouse or equivalent)
7. Central mixer loading: enclosed mixer with water sprays |
| PM2.5 | No standard |

(A) The only criteria emissions of interest are PM10 and PM2.5. No standards are listed for VOC, NOx, SOx, or CO emissions.

RULE REQUIREMENTS:
None

The following control technologies have been identified and are ranked based on stringency:
SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES (A)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Standard</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Sand and Aggregate storage: outdoor storage piles adequately wetted to prevent visible emissions > 5% opacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Sand and aggregate handling (all transfer points): water sprays on all transfer points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Sand and aggregate weigh batcher: material adequately wetted to prevent visible emissions > 5% opacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Storage silos for cement, flyash and other supplements: enclosed silo vented to a control device with 99% efficiency (baghouse, bin vent or equivalent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Cement weigh batcher: enclosed weigh batcher vented to a control device with 99% efficiency (baghouse or equivalent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Transit-mixed truck loading: loading operation enclosed by a flexible shroud which seals to the truck and is vented to a control device with 99% efficiency (baghouse or equivalent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Central mixer loading: enclosed mixer with water sprays – [SJVAPCD]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Transit Mixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Baghouse Venting the Cement Weigh Hopper and the Mixer Truck Loading Station; and Adequate Aggregate Moisture (07-11-97) - [SCAQMD]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Central Mixed < 5 Cubic Yards/Batch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Water spray - [SCAQMD]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Maintain a min 1.5% moisture content in materials less than 0.25 inches in diameter for the entire process and control efficiency of 81.5%, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>No standards</td>
<td></td>
</tr>
</tbody>
</table>

(A) The only criteria emissions of interest are PM10 and PM2.5. No standards are listed for VOC, NOx, SOx, or CO emissions.

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

BEST CONTROL TECHNOLOGIES ACHIEVED

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Standard</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>No Standard</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>No Standard</td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>No Standard</td>
<td></td>
</tr>
</tbody>
</table>
BEST CONTROL TECHNOLOGIES ACHIEVED

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Standard</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>a. Sand and Aggregate storage: outdoor storage piles adequately wetted to prevent visible emissions > 5% opacity</td>
<td>SJVAPCD</td>
</tr>
<tr>
<td></td>
<td>b. Sand and aggregate handling (all transfer points): water sprays on all transfer points</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Sand and aggregate weigh batcher/conveyor: material adequately wetted to prevent visible emissions > 5% opacity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Storage silos for cement, flyash and other supplements: enclosed silo vented to a control device with 99% efficiency (baghouse, bin vent or equivalent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Cement weigh batcher: enclosed weigh batcher vented to a control device with 99% efficiency (baghouse or equivalent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Transit-mixed truck loading: loading operation enclosed by a flexible shroud which seals to the truck and is vented to a control device with 99% efficiency (baghouse or equivalent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Central mixer loading: enclosed mixer with water sprays</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>No Standard</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>No Standard</td>
<td></td>
</tr>
</tbody>
</table>

B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

The District’s Small Emitter and “Otherwise-Exempt Equipment” BACT Determinations policy (dated 5/16/2019) states that units which are classified as small emitters (less than 10 lbs/day of VOC, NOx, SOx, PM10, or PM2.5 and less than 550 lbs/day of CO) and are located at non-major stationary sources are only required to meet BACT standards that have been achieved in practice. Therefore, this BACT determination will only be based on what is achieved in practice and will only be applied to small emitters at non-major sources. BACT will be evaluated on a case-by-case basis for units that do not fit these criteria.
C. SELECTION OF BACT:

Based on the above analysis, BACT for PM10 will be the most stringent standards of what is currently achieved in practice.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Standard</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>No Standard</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>No Standard</td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>No Standard</td>
<td></td>
</tr>
</tbody>
</table>
| PM10 | a. Sand and Aggregate storage: outdoor storage piles adequately wetted to prevent visible emissions > 5% opacity
b. Sand and aggregate handling (all transfer points): water sprays on all transfer points
c. Sand and aggregate weigh batcher: material adequately wetted to prevent visible emissions > 5% opacity
d. Storage silos for cement, flyash and other supplements: enclosed silo vented to a control device with 99% efficiency (baghouse, bin vent or equivalent)
e. Cement weigh batcher: enclosed weigh batcher vented to a control device with 99% efficiency (baghouse or equivalent)
f. Transit-mixed truck loading: loading operation enclosed by a flexible shroud which seals to the truck and is vented to a control device with 99% efficiency (baghouse or equivalent)
g. Central mixer loading: enclosed mixer with water sprays | SJVAPCD |
| PM2.5 | No Standard | |
| CO | No Standard | |

D. SELECTION OF T-BACT:

Toxics are in the form of PM. The control of particulate matter through meeting the BACT standard will also control toxics found in the PM. Therefore, meeting the BACT controls for the control of PM will be considered equivalent to meeting T-BACT requirements.
Attachment A

SJVAPCD BACT Determination
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 6.2.2*
Last Update: 7/31/2018

Concrete Batch Plant

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>1) SAND/AGGREGATE STORAGE:</td>
<td>1) SAND/AGGREGATE STORAGE:</td>
<td>2) CENTRAL MIXER LOADING:</td>
</tr>
<tr>
<td></td>
<td>Outdoor storage piles adequately wetted a) to prevent visible emissions > 5% opacity, or b) with minimum moisture content of 2% for aggregate and 4% for sand</td>
<td>Enclosed storage (building, silo, or equivalent) vented to a control device with 99% control efficiency (baghouse or equivalent)</td>
<td>< 5 cubic yard batch capacity: enclosed mixer vented to a control device with 99% control efficiency (baghouse or equivalent)</td>
</tr>
<tr>
<td></td>
<td>2) SAND/AGGREGATE HANDLING (ALL TRANSFER POINTS): Water sprays on all transfer points to prevent visible emissions > 5% opacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) SAND/AGGREGATE WEIGH BATCHER: Material adequately wetted to prevent visible emissions > 5% opacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) STORAGE SILOS for CEMENT, FLYASH and OTHER SUPPLEMENTS: Enclosed silo vented to a control device with 99% efficiency (baghouse, bin vent or equivalent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) CEMENT/FLYASH/SUPPLEMENTS WEIGH BATCHER: Enclosed weigh batcher vented to a control device with 99% efficiency (baghouse or equivalent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) TRANSIT-MIXED TRUCK LOADING: Loading operation enclosed by a flexible shroud which seals to the truck and is vented to a control device with 99% efficiency (baghouse or equivalent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) CENTRAL MIXER LOADING: a) < 5 yd³ batch capacity: enclosed mixer with water sprays, b) > or = 5 yd³ batch capacity: enclosed mixer vented to a control device with 99% efficiency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2.2
Attachment B

SCAQMD BACT Determination
SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

Best Available Control Technology (BACT) Guidelines for Non-Major Polluting Facilities

10-20-2000 Rev. 0

Equipment or Process: Concrete Batch Plant

<table>
<thead>
<tr>
<th>Rating/Size</th>
<th>VOC</th>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
<th>PM10</th>
<th>Inorganic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Mixed, ≥ 5 Cubic Yards/Batch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baghouse for Cement Handling and Adequate Moisture in Aggregate (1988)</td>
<td></td>
</tr>
<tr>
<td>Transit-Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baghouse Venting the Cement Weigh Hopper and the Mixer Truck Loading Station; and Adequate Aggregate Moisture (07-11-97)</td>
<td></td>
</tr>
</tbody>
</table>

* Means those facilities that are not major polluting facilities as defined by Rule 1302 - Definitions

BACT Guidelines - Part D Concrete Batch Plant
Attachment C

EPA BACT Determination
Pollutant Information

Pollutant: Particulate matter, filterable < 10 \(\mu \)m (PM10)

Pollutant Group(s): Particulate Matter (PM),

Substance Registry System: Particulate matter, filterable < 10 \(\mu \)m (PM10)

Pollution Prevention/Add-on Control Equipment/Both/No Controls Feasible: P

Process Information:

Cost Data:
Cost Verified?: No

Cost Year Used in Cost Estimates:
Cost Effectiveness: 0 \$/ton
Incremental Cost Effectiveness: 0 \$/ton

Pollutant Notes:
THE ANNUAL EMISSION LIMIT FOR THIS UNIT IS 0.29 TONS PER YEAR.
Technology Transfer Network
Clean Air Technology Center
Process Information - Details

For information about the pollutants related to this process, click on the specific pollutant in the list below.

RBLC ID: NV-0045
Corporate/Company: AGGREGATE INDUSTRIES
Facility Name: SLOAN QUARRY
Process: AGGREGATE/CEMENT MIXING

Primary Fuel: N/A
Throughput: 100.00 T/H
Process Code: 90.012

Pollutant Information - List of Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Primary Emission Limit</th>
<th>Basis Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter, filterable < 10 µg</td>
<td>0.0038 LB/T LAER YES</td>
<td></td>
</tr>
</tbody>
</table>

Process Notes: THE EMISSION UNIT (AP12) IS THE MIXER OPERATED BY AGGREGATE/CEMENT PRODUCTS. THE ANNUAL PROCESS CAPACITY IS LIMITED TO 150,000 TONS PER YEAR.

Process Information - Details

For information about the pollutants related to this process, click on the specific pollutant in the list below.

Last updated on 10/2/2015

Technoogy Transfer Network

Process Information - Details

RBLC ID: NV-0047
Corporate/Company: 99 CIVIL ENGINEER SQUADRION OF USAF
Facility Name: NELLIS AIR FORCE BASE
Process: CONCRETE BATCH PLANT

Primary Fuel: N/A
Throughput: N/A
Process Code: 90.012

Pollutant Information - List of Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Primary Emission Limit</th>
<th>Basis</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter, filterable < 10 (\mu) (PM10)</td>
<td>0.0514 LB/T</td>
<td>PRODUCTION</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Case-by-Case</td>
</tr>
</tbody>
</table>

Process Notes: THE PROCESS CONSISTS OF THIRTEEN (13) EMISSION UNITS INCLUDING ONE DIESEL GENERATOR. THE CONCRETE BATCH PLANT (UNIT A615) IS SELECTED TO SHOW THE BACT DETERMINATIONS. PRODUCTION FOR THE PLANT IS LIMITED TO 200 TONS/HR AND 15,000 TONS/YR.

10/2/2015
Pollutant Information

Click on the Process Information button to see more information about the process associated with this pollutant. Or click on the Process List button to return to the list of processes.

Pollutant Information

RBLC ID: NV-0047

Corporate/Company: CIVIL ENGINEER SQUADRON OF USAF

Facility Name: NELLS AIR FORCE BASE

Process: CONCRETE BATCH PLANT

Pollutant: Particulate matter, filterable < 10 µm (PM10)

CAS Number: PM

Pollutant Group(s): Particulate Matter (PM)

Substance Registry System: Particulate matter, filterable < 10 µm (PM10)

Pollution Prevention/Add-on Control Equipment/Audit/No controls Feasible: P

F2/Use-on Description: MAINTAINING A MINIMUM OF 1.2% MOISTURE CONTENT IN MATERIALS LESS THAN 0.25 INCHES IN DIAMETER FOR THE ENTIRE PROCESS

Test Method: Unspecified

Percent Efficiency: 81.500

Compliance Verified: No

EMISSION LIMITS:

- **Case-by-Case Basis:** Other Case-by-Case
- **Other Applicable Requirements:** SIP, OPERATING PERMIT
- **Other Factors Influence Decision:** No

Emission Limit 1:

- **Emission Limit 2:**

Standard Emission Limit:

COST DATA:

- **Cost Verified:** No
- **Cost Effectiveness:** $0/ton
- **Incremental Cost Effectiveness:** $0/ton
- **Pollutant Notes:**

http://cfpub.epa.gov/rbloc/index.cfm?action=PermitDetail.PollutantInfo&Facility_ID=2687... 10/2/2015
Pollutant Information

Click on the Process Information button to see more information about the process associated with this pollutant.
Or click on the Process List button to return to the list of processes.

RBLC ID: NV-0045
Corporate/Company: AGGREGATE INDUSTRIES
Facility Name: SLOAN QUARRY
Process: AGGREGATE/CEMENT MIXING

Pollutant: Particulate matter, filterable < 2.5 µm (PM2.5)

Pollutant Group(s): Particulate Matter (PM),

Substance Registry System: Particulate matter, filterable < 2.5 µm (PM2.5)

Pollution Prevention/Add-on Control Equipment/Both/No Controls Feasible: P
Add-on Description: ENCLOSURE

Test Method: Unspecified

Percent Efficiency: 62.000

Compliance Verified: Yes

EMISSION LIMITS:

Case-by-Case Basis: NA
Other Applicable Requirements: NO
Other Factors Influence Decision: NO

Emission Limit 1: 0.0038 LB/T
Emission Limit 2: 0.3800 LB/T
Standard Emission Limit: 0.0038 LB/T

CO2 DATA:

Cost Verified: No

Cost Effectiveness:

Incremental Cost Effectiveness:

Pollutant Notes: THE ANNUAL EMISSION LIMIT FOR THIS UNIT IS 0.29 TONS PER YEAR.
Pollutant Information

Click on the Process Information button to see more information about the process associated with this pollutant. Or click on the Process List button to return to the list of processes.

<table>
<thead>
<tr>
<th>Pollutant Information</th>
<th>RBL C Home</th>
<th>New Search</th>
<th>Search Results</th>
<th>Facility Information</th>
<th>Process List</th>
<th>Process Information</th>
</tr>
</thead>
</table>

RBL C ID: NV-0047
Corporate/Company: 99 CIVIL ENGINEER SQUADRON OF USAF
Facility Name: NELLS AIR FORCE BASE
Process: CONCRETE BATCH PLANT

Pollutant: Particulate matter, filterable < 10 μm (FPF10)
CAS Number: PM
Pollutant Group(s): Particulate Matter (PM)
Substance Registry System: Particulate matter, filterable < 10 μm (FPF10)

Pollution Prevention/Add-on Control Equipment/Both/No Controls Feasible: P

72/Add-on Control Description: MAINTAINING A MINIMUM OF 1.5% MOISTURE CONTENT IN MATERIALS LESS THAN 0.25 INCHES IN DIAMETER FOR THE ENTIRE PROCESS

Test Method: Unspecified
<table>
<thead>
<tr>
<th>Unspecified</th>
<th>EPA/DOE Method</th>
<th>All Other Methods</th>
</tr>
</thead>
</table>

Percent Efficiency: 81.500
Compliance Verified: No
Emission Limits:
<table>
<thead>
<tr>
<th>Case-by-Case Basis:</th>
<th>Other Case-by-Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Applicable Requirements:</td>
<td>SIP, OPERATING PERMIT</td>
</tr>
<tr>
<td>Other Factors Influence Decision:</td>
<td>No</td>
</tr>
<tr>
<td>Emission Limit 1:</td>
<td>0.0514 lb/ft³ PRODUCTION</td>
</tr>
<tr>
<td>Emission Limit 2:</td>
<td>10.2900 lb/ft³</td>
</tr>
<tr>
<td>Standard Emission Limit:</td>
<td>0.0514 lb/ft³ PRODUCTION</td>
</tr>
</tbody>
</table>

Cost Data:
Cost Verified?	No
Cost Effectiveness:	0 $/ton
Incremental Cost Effectiveness:	0 $/ton
Pollutant Notes:	
